After the work of Rindler and Ishak, it is now well established that the bending of light is influenced by the cosmological constant Λ appearing in the Schwarzschild-de Sitter spacetime. We show that their method, when applied to the galactic halo gravity parametrized by a constant γ, yields exactly the same γ− correction to Schwarzschild bending as obtained by standard methods. Different cases are analyzed, which include some corrections to the special cases considered in the original paper by Rindler and Ishak.---------------------
Deep neural networks (DNNs) with a step-by-step introduction of inputs, which is constructed by imitating the somatosensory system in human body, known as SpinalNet have been implemented in this work on a Galaxy Zoo dataset. The input segmentation in SpinalNet has enabled the intermediate layers to take some of the inputs as well as output of preceding layers thereby reducing the amount of the collected weights in the intermediate layers. As a result of these, the authors of SpinalNet reported to have achieved in most of the DNNs they tested, not only a remarkable cut in the error but also in the large reduction of the computational costs. Having applied it to the Galaxy Zoo dataset, we are able to classify the different classes and/or sub-classes of the galaxies. Thus, we have obtained higher classification accuracies of 98.2, 95 and 82 percents between elliptical and spirals, between these two and irregulars, and between 10 sub-classes of galaxies, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.