The emergent coherent population activity from thousands of stochastic neurons in the brain is believed to constitute a key neuronal mechanism for salient processing of external stimuli and its link to internal states like attention and perception. In the sensory cortex, functional cell assemblies are formed by recurrent excitation and inhibitory influences. The stochastic dynamics of each cell involved is largely orchestrated by presynaptic CAV2.1 voltage-gated calcium channels (VGCCs). Cav2.1 VGCCs initiate the release of neurotransmitters from the presynaptic compartment and are therefore able to add variability into synaptic transmission which can be partly explained by their mobile organization around docked vesicles. To investigate the relevance of Cav2.1 channel surface mobility for the input processing in the primary auditory cortex (A1) in vivo, we make use of a new optogenetic system which allows us to acutely cross-link Cav2.1 VGCCs via a photo-cross-linkable cryptochrome mutant, CRY2olig. In order to map neuronal activity across all cortical layers of the A1, we performed laminar current-source density (CSD) recordings with varying auditory stimulus sets in transgenic mice with a citrine tag on the N-terminus of the VGCCs. Clustering VGCCs suppresses overall sensory-evoked population activity, particularly when stimuli lead to a highly synchronized distribution of synaptic inputs. Our findings reveal the importance of membrane dynamics of presynaptic calcium channels for sensory encoding by dynamically adjusting network activity across a wide range of synaptic input strength.
The brains of black 6 mice (Mus musculus) and Seba′s short-tailed bats (Carollia perspicillata) weigh roughly the same and share the mammalian neocortical laminar architecture. Bats have highly developed sonar calls and social communication and are an excellent neuroethological animal model for auditory research. Mice are olfactory and somatosensory specialists and are used frequently in auditory neuroscience, particularly for their advantage of standardization and genetic tools. Investigating their potentially different general auditory processing principles would advance our understanding of how the ecological needs of a species shape the development and function of the mammalian nervous system. We compared two existing datasets, recorded with linear multichannel electrodes down the depth of the primary auditory cortex (A1) while awake, across both species while presenting repetitive stimulus trains with different frequencies (~5 and ~40 Hz). We found that while there are similarities between cortical response profiles in bats and mice, there was a better signal to noise ratio in bats under these conditions, which allowed for a clearer following response to stimuli trains. This was most evident at higher frequency trains, where bats had stronger response amplitude suppression to consecutive stimuli. Phase coherence was far stronger in bats during stimulus response, indicating less phase variability in bats across individual trials. These results show that although both species share cortical laminar organization, there are structural differences in relative depth of layers. Better signal to noise ratio in bats could represent specialization for faster temporal processing shaped by their individual ecological niches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.