We propose a real-time approximation of R0 in an SIR-type model that applies to the COVID-19 epidemic outbreak. A very useful direct formula expressing R0 is found. Then, various type of models are considered, namely, finite differences, cubic splines, Piecewise Cubic Hermite interpolation and linear least squares approximation. Preserving the monotonicity of the formula under consideration proves to be of crucial importance. This latter property is preferred over accuracy, since it maintains positive R0. Only the Linear Least Squares technique guarantees this, and is finally proposed here. Tests on real COVID-19 data confirm the usefulness of our approach.
Minimum-cost portfolio insurance (MCPI) is a well-known investment strategy that tries to limit the losses a portfolio may incur as stocks decrease in price without requiring the portfolio manager to sell those stocks. In this research, we define and study the time-varying MCPI problem as a time-varying linear programming problem. More precisely, using real-world datasets, three different error-correction neural networks are employed to address this financial TLPtime-varying linear programming problem in continuous-time. These neural network solvers are the zeroing NNneural network (ZNN), the linear-variational-inequality primal-dual NNneural network (LVI-PDNN), and the simplified LVI-PDNN (S-LVI-PDNN). The neural network solvers are tested using real-world data on portfolios of up to 20 stocks, and the results show that they are capable of solving the financial problem efficiently, in some cases more than five times faster than traditional methods, though their accuracy declines as the size of the portfolio increases. This demonstrates the speed and accuracy of neural network solvers, showing their superiority over traditional methods in moderate-size portfolios. To promote and contend the outcomes of this research, we created two MATLAB repositories for the interested user,research, we created two MATLAB repositories, for the interested user, that are publicly accessible on GitHub.
The purpose of the present work is to construct a new Runge–Kutta pair of orders five and four to outperform the state-of-the-art in these kind of methods when addressing problems with periodic solutions. We consider the family of such pairs that the celebrated Dormand–Prince pair also belongs. The chosen family comes with coefficients that all depend on five free parameters. These latter parameters are tuned in a way to furnish a new method that performs best on a couple of oscillators. Then, we observe that this trained pair outperforms other well known methods in the relevant literature in a standard set of problems with periodic solutions. This is remarkable since no special property holds such as high phase-lag order or an extended interval of periodicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.