Abstract-This paper addresses the design of mobile sensor networks for optimal data collection. The development is strongly motivated by the application to adaptive ocean sampling for an autonomous ocean observing and prediction system. A performance metric, used to derive optimal paths for the network of mobile sensors, defines the optimal data set as one which minimizes error in a model estimate of the sampled field. Feedback control laws are presented that stably coordinate sensors on structured tracks that have been optimized over a minimal set of parameters. Optimal, closed-loop solutions are computed in a number of low-dimensional cases to illustrate the methodology. Robustness of the performance to the influence of a steady flow field on relatively slow-moving mobile sensors is also explored.
The Labrador Sea is one of the sites where convection exports surface water to the deep ocean in winter as part of the thermohaline circulation. Labrador Sea water is characteristically cold and fresh, and it can be traced at intermediate depths (500-2,000 m) across the North Atlantic Ocean, to the south and to the east of the Labrador Sea. Widespread observations of the ocean currents that lead to this distribution of Labrador Sea water have, however, been difficult and therefore scarce. We have used more than 200 subsurface floats to measure directly basin-wide horizontal velocities at various depths in the Labrador and Irminger seas. We observe unanticipated recirculations of the mid-depth (approximately 700 m) cyclonic boundary currents in both basins, leading to an anticyclonic flow in the interior of the Labrador basin. About 40% of the floats from the region of deep convection left the basin within one year and were rapidly transported in the anticyclonic flow to the Irminger basin, and also eastwards into the subpolar gyre. Surprisingly, the float tracks did not clearly depict the deep western boundary current, which is the expected main pathway of Labrador Sea water in the thermohaline circulation. Rather, the flow along the boundary near Flemish Cap is dominated by eddies that transport water offshore. Our detailed observations of the velocity structure with a high data coverage suggest that we may have to revise our picture of the formation and spreading of Labrador Sea water, and future studies with similar instrumentation will allow new insights on the intermediate depth ocean circulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.