Registration of a preoperative CT (3D) image to one or more X-ray projection (2D) images, a special case of the pose estimation problem, has been attempted in a variety of ways with varying degrees of success. Recently, there has been a great deal of interest in intensity-based methods. One of the drawbacks to such methods is the need to create digitally reconstructed radiographs (DRRs) at each step of the optimization process. DRRs are typically generated by ray casting, an operation that requires Ç´Ò ¿ µ time, where we assume that Ò is approximately the size (in voxels) of one side of the DRR as well as one side of the CT volume. We address this issue by extending light field rendering techniques from the computer graphics community to generate DRRs instead of conventional rendered images. Using light fields allows most of the computation to be performed in a preprocessing step; after this precomputation, very accurate DRRs can be generated in Ç´Ò ¾ µ time. Another important issue for 2D-3D registration algorithms is validation. Previously reported 2D-3D registration algorithms were validated using synthetic data or phantoms but not clinical data. We present an intensity-based 2D-3D registration system that generates DRRs using light fields; we validate its performance using clinical data with a known gold standard transformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.