Malignancy is associated with altered expression of glycans and glycoproteins that contribute to the cellular glycocalyx. We constructed a glycoprotein expression signature, which revealed that metastatic tumours upregulate expression of bulky glycoproteins. A computational model predicted that these glycoproteins would influence transmembrane receptor spatial organization and function. We tested this prediction by investigating whether bulky glycoproteins in the glycocalyx promote a tumour phenotype in human cells by increasing integrin adhesion and signalling. Our data revealed that a bulky glycocalyx facilitates integrin clustering by funnelling active integrins into adhesions and altering integrin state by applying tension to matrix-bound integrins, independent of actomyosin contractility. Expression of large tumour-associated glycoproteins in non-transformed mammary cells promoted focal adhesion assembly and facilitated integrin-dependent growth factor signalling to support cell growth and survival. Clinical studies revealed that large glycoproteins are abundantly expressed on circulating tumour cells from patients with advanced disease. Thus, a bulky glycocalyx is a feature of tumour cells that could foster metastasis by mechanically enhancing cell-surface receptor function.
Tissue mechanics regulate development and homeostasis and are consistently modified in tumor progression. Nevertheless, the fundamental molecular mechanisms through which altered mechanics regulate tissue behavior and the clinical relevance of these changes remain unclear. We demonstrate that increased matrix stiffness modulates microRNA expression to drive tumor progression through integrin activation of β-catenin and MYC. Specifically, in human and mouse tissue, increased matrix stiffness induced miR-18a to reduce levels of the tumor suppressor PTEN, both directly and indirectly by decreasing levels of HOXA9. Clinically, extracellular matrix stiffness correlated significantly with miR-18a in human breast tumor biopsies. miR-18a expression was highest in basal-like breast cancers in which PTEN and HOXA9 levels were lowest and predicted for poor prognosis in patients with luminal breast cancers. Our findings identify a mechanically-regulated microRNA circuit that can promote malignancy and suggest potential prognostic roles for HOXA9 and miR-18a levels in stratifying patients with luminal breast cancers.
Acetylation of histone H3 at lysine 27 is a well-defined marker of enhancer activity. However, the functional impact of this modification at enhancers is poorly understood. Here, we use a chemical genetics approach to acutely block the function of the cAMP response element binding protein (CREB) binding protein (CBP)/P300 bromodomain in models of hematological malignancies and describe a consequent loss of H3K27Ac specifically from enhancers, despite the continued presence of CBP/P300 at chromatin. Using this approach to dissect the role of H3K27Ac at enhancers, we identify a critical role for this modification in the production of enhancer RNAs and transcription of enhancer-regulated gene networks.
Comparative genomic studies in primates have yielded important insights into the evolutionary forces that shape genetic diversity and revealed the likely genetic basis for certain species-specific adaptations. To date, however, these studies have focused on only a small number of species. For the majority of nonhuman primates, including some of the most critically endangered, genome-level data are not yet available. In this study, we have taken the first steps toward addressing this gap by sequencing RNA from the livers of multiple individuals from each of 16 mammalian species, including humans and 11 nonhuman primates. Of the nonhuman primate species, five are lemurs and two are lorisoids, for which little or no genomic data were previously available. To analyze these data, we developed a method for de novo assembly and alignment of orthologous gene sequences across species. We assembled an average of 5721 gene sequences per species and characterized diversity and divergence of both gene sequences and gene expression levels. We identified patterns of variation that are consistent with the action of positive or directional selection, including an 18-fold enrichment of peroxisomal genes among genes whose regulation likely evolved under directional selection in the ancestral primate lineage. Importantly, we found no relationship between genetic diversity and endangered status, with the two most endangered species in our study, the black and white ruffed lemur and the Coquerel's sifaka, having the highest genetic diversity among all primates. Our observations imply that many endangered lemur populations still harbor considerable genetic variation. Timely efforts to conserve these species alongside their habitats have, therefore, strong potential to achieve long-term success.
Extracellular matrix stiffness induces focal adhesion assembly to drive malignant transformation and tumor metastasis. Nevertheless, how force alters focal adhesions to promote tumor progression remains unclear. Here, we explored the role of the focal adhesion protein vinculin, a force-activated mechano-transducer, in mammary epithelial tissue transformation and invasion. We found that extracellular matrix stiffness stabilizes the assembly of a vinculin-talin-actin scaffolding complex that facilitates PI3-kinase mediated phosphatidylinositol (3,4,5)-triphosphate phosphorylation. Using defined two and three dimensional matrices, a mouse model of mammary tumorigenesis with vinculin mutants and a novel super resolution imaging approach, we established that ECM stiffness, per se, promotes the malignant progression of a mammary epithelium by activating and stabilizing vinculin and enhancing Akt signaling at focal adhesions. Our studies also revealed that vinculin strongly co-localizes with activated Akt at the invasive border of human breast tumors, where the ECM is stiffest and we detected elevated mechano-signaling. Thus, extracellular matrix stiffness could induce tumor progression by promoting the assembly of signaling scaffolds; a conclusion underscored by the significant association we observed between highly expressed focal adhesion plaque proteins and malignant transformation across multiple types of solid cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.