Vibrational frequencies determined from ab initio calculations are often scaled by empirical factors. An empirical scaling factor partially compensates for the errors arising from vibrational anharmonicity and incomplete treatment of electron correlation. These errors are not random but are systematic biases. We report scaling factors for 40 combinations of theory and basis set, intended for predicting the fundamental frequencies from computed harmonic frequencies. An empirical scaling factor carries uncertainty. We quantify and report, for the first time, the uncertainties associated with the scaling factors. The uncertainties are larger than generally acknowledged; the scaling factors have only two significant digits. For example, the scaling factor for HF/6-31G(d) is 0.8982 +/- 0.0230 (standard uncertainty). The uncertainties in the scaling factors lead to corresponding uncertainties in predicted vibrational frequencies. The proposed method for quantifying the uncertainties associated with scaling factors is based on the Guide to the Expression of Uncertainty in Measurement, published by the International Organization for Standardization (ISO). The data used are from the Computational Chemistry Comparison and Benchmark Database (CCCBDB), maintained by the National Institute of Standards and Technology, which includes more than 3939 independent vibrations for 358 molecules.
With the advent of the Heliophysics/Geospace System Observatory (H/GSO), a complement of multi-spacecraft missions and ground-based observatories to study the space environment, data retrieval, analysis, and visualization of space physics data can be daunting. The Space Physics Environment Data Analysis System (SPEDAS), a grass-roots software development platform ( www.spedas.org ), is now officially supported by NASA Heliophysics as part of its data environment infrastructure. It serves more than a dozen space missions and ground observatories and can integrate the full complement of past and upcoming space physics missions with minimal resources, following clear, simple, and well-proven guidelines. Free, modular and configurable to the needs of individual missions, it works in both command-line (ideal for experienced users) and Graphical User Interface (GUI) mode (reducing the learning curve for first-time users). Both options have “crib-sheets,” user-command sequences in ASCII format that can facilitate record-and-repeat actions, especially for complex operations and plotting. Crib-sheets enhance scientific interactions, as users can move rapidly and accurately from exchanges of technical information on data processing to efficient discussions regarding data interpretation and science. SPEDAS can readily query and ingest all International Solar Terrestrial Physics (ISTP)-compatible products from the Space Physics Data Facility (SPDF), enabling access to a vast collection of historic and current mission data. The planned incorporation of Heliophysics Application Programmer’s Interface (HAPI) standards will facilitate data ingestion from distributed datasets that adhere to these standards. Although SPEDAS is currently Interactive Data Language (IDL)-based (and interfaces to Java-based tools such as Autoplot), efforts are under-way to expand it further to work with python (first as an interface tool and potentially even receiving an under-the-hood replacement). We review the SPEDAS development history, goals, and current implementation. We explain its “modes of use” with examples geared for users and outline its technical implementation and requirements with software developers in mind. We also describe SPEDAS personnel and software management, interfaces with other organizations, resources and support structure available to the community, and future development plans. Electronic Supplementary Material The online version of this article (10.1007/s11214-018-0576-4) contains supplementary material, which is available to authorized users.
To predict the vibrational spectra of molecules, ab initio calculations are often used to compute harmonic frequencies, which are usually scaled by empirical factors as an approximate correction for errors in the force constants and for anharmonic effects. Anharmonic computations of fundamental frequencies are becoming increasingly popular. We report scaling factors, along with their associated uncertainties, for anharmonic (second-order perturbation theory) predictions from HF, MP2, and B3LYP calculations using the 6-31G(d) and 6-31+G(d,p) basis sets. Different scaling factors are appropriate for low- and high-frequency vibrations. The method of analysis is based upon the Guide to the Expression of Uncertainty in Measurement, published by the International Organization for Standardization (ISO). The data used are from the Computational Chemistry Comparison and Benchmark Database (CCCBDB), maintained by the National Institute of Standards and Technology, which includes more than 3939 independent vibrations for 358 molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.