As the only species exceeding 90 m in height and 2000 years of age, Sequoia sempervirens and Sequoiadendron giganteum provide the optimal platform upon which to examine interactions among tree structure, age, and growth. We climbed 140 trees in oldgrowth redwood forests across California, USA, spanning a broad range of sizes and including the tallest, largest, and oldest known living individuals (i.e., 115.86 vs. 96.29 m tall, 424 vs. 582 Mg aboveground dry mass, and 2510 vs. 3240 years old for Sequoia and Sequoiadendron, respectively). We used a combination of direct measurements, hierarchical sampling, and dendrochronology to quantify tree structure and annual growth increments through old age. We also developed equations to predict aboveground attributes of standing redwoods via ground-based measurements. Compared to Sequoia, Sequoiadendron develops thicker bark on lower trunks, provisions leaves with more sapwood, and delays heartwood production throughout the crown. Main trunk wood volume growth (up to 1.6 vs. 0.9 m 3 /yr), aboveground biomass growth (up to 0.77 vs. 0.45 Mg/yr), and aboveground growth efficiency (0.55 6 0.04 vs. 0.22 6 0.01 kg annual growth per kg leaves, mean 6 SE) are all higher in Sequoia. Two independent dimensions of structure-size and aboveground vigor-are the strongest predictors of tree-level productivity in both species. A third dimension, relative trunk size, is a significant predictor of growth in Sequoia such that trees with relatively large main trunks compared to their crowns produce more wood annually. Similar-size trees grow at similar rates regardless of latitude or elevation in tall forests of each species. Recent annual growth increments are higher than in the past for the majority of trees, and old trees are just as responsive to environmental changes as young trees. Negative growth-age relationships in previous centuries and positive growth-age relationships in recent decades reflect sampling bias and shifting disturbance regimes. Overall, we find little (if any) evidence for negative effects of old age on tree-level productivity in either species. Except for recovery periods following temporary reductions in crown size, annual increments of wood volume and biomass growth increase as redwoods enlarge with age until extrinsic forces cause tree death.
Extremely decay-resistant wood and fire-resistant bark allow California’s redwoods to accumulate millennia of annual growth rings that can be useful in biological research. Whereas tree rings of Sequoiadendron giganteum (SEGI) helped formalize the study of dendrochronology and the principle of crossdating, those of Sequoia sempervirens (SESE) have proven much more difficult to decipher, greatly limiting dendroclimatic and other investigations of this species. We overcame these problems by climbing standing trees and coring trunks at multiple heights in 14 old-growth forest locations across California. Overall, we sampled 1,466 series with 483,712 annual rings from 120 trees and were able to crossdate 83% of SESE compared to 99% of SEGI rings. Standard and residual tree-ring chronologies spanning up to 1,685 years for SESE and 1,538 years for SEGI were created for each location to evaluate crossdating and to examine correlations between annual growth and climate. We used monthly values of temperature, precipitation, and drought severity as well as summer cloudiness to quantify potential drivers of inter-annual growth variation over century-long time series at each location. SESE chronologies exhibited a latitudinal gradient of climate sensitivities, contrasting cooler northern rainforests and warmer, drier southern forests. Radial growth increased with decreasing summer cloudiness in northern rainforests and a central SESE location. The strongest dendroclimatic relationship occurred in our southernmost SESE location, where radial growth correlated negatively with dry summer conditions and exhibited responses to historic fires. SEGI chronologies showed negative correlations with June temperature and positive correlations with previous October precipitation. More work is needed to understand quantitative relationships between SEGI radial growth and moisture availability, particularly snowmelt. Tree-ring chronologies developed here for both redwood species have numerous scientific applications, including determination of tree ages, accurate dating of fire-return intervals, archaeology, analyses of stable isotopes, long-term climate reconstructions, and quantifying rates of carbon sequestration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.