The OMC normal databases and dynamic OMC displays should help clinicians evaluate cardiac mechanic dyssynchrony. Prospective clinical trials are needed to validate whether this tool can be used to select patients with severe heart failure symptoms who might benefit from cardiac resynchronization therapy.
Objective. To compare the diagnostic performance of a new dedicated ultrafast solid-state cardiac camera (Discovery NM 530c [DNM]) with standard dual detector cameras (S-SPECT) in myocardial perfusion imaging. The primary goal was a per-patient analysis of diagnostic performance of the DNM using S-SPECT as the reference standard.Methods and results. In total, 168 patients underwent one-day Tc-99m tetrofosmin rest/ stress myocardial perfusion SPECT. DNM and S-SPECT images were obtained with the same injected doses. The DNM camera uses an array of cadmium zinc telluride pixilated detectors and a multipinhole collimator simultaneously imaging all cardiac views with no moving parts. Rest and stress acquisition times were 4 and 2 minutes for DNM and 14 and 12 minutes for S-SPECT. Two blinded readers independently interpreted all scans on a patient level and on a vascular territory level using a standard five-point scale. Interobserver differences were resolved by a third observer. Agreement between DNM and S-SPECT for presence or absence of myocardial perfusion defects on a per-patient analysis was 91.9% and 92.5%, respectively. Correlation coefficients of rest and stress left ventricular ejection fractions were 0.87 (P < .01) and 0.90 (P < .01).Conclusion. The diagnostic performance of DNM is comparable to that of S-SPECT on a per-patient basis. However, superior image quality can be achieved with significantly shorter acquisition times with DNM because of improved count sensitivity and image contrast over S-SPECT. (J Nucl Cardiol 2009;16:927-34.)
Single photon emission computed tomography (SPECT) myocardial perfusion imaging has attained widespread clinical acceptance as a standard of care for patients with known or suspected coronary artery disease. A significant contribution to this success has been the use of computer techniques to provide objective quantitative assessment in interpreting these studies. We have implemented the Emory Cardiac Toolbox (ECTb) as a pipeline to distribute the software tools that we and others have researched, developed, and validated to be clinically useful so that diagnosticians everywhere can benefit from our work. Our experience has demonstrated that integration of all software tools in a common platform is the optimal approach to promote both accuracy and efficiency. Important attributes of the ECTb approach are (1) our extensive number of normal perfusion databases for SPECT and positron emission tomography (PET) studies, each created with at least 150 patients; (2) our use of Fourier analysis of regional thickening to ensure proper temporal resolution and to allow accurate measurement of left ventricular function and dyssynchrony; (3) our development of PET tools to quantify myocardial hibernation and viability; (4) our development of 3-dimensional displays and the use of these displays as a platform for image fusion of perfusion and computed tomography angiography; and (5) the use of expert systems for decision support. ECTb is an important tool for extracting quantitative parameters from all types of cardiac radionuclide distributions. ECTb should continue to play an important role in establishing cardiac SPECT and PET for flow, function, metabolism, and innervation clinical applications.
Normal limits adjusted for age and sex have been established. Applying normal ranges to quantitative MAG3 parameters may assist in the interpretation of MAG3 scintigraphy and facilitate appropriate patient management.
QGS and ECTb values of cardiac function computed from 8-frame gated perfusion SPECT correlate very well with each other and correlate well with MR. Averaged over all subjects, ECTb measurements of EF are not significantly different from MR values but QGS significantly underestimates the MR values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.