Summary Trait‐based approaches have improved our understanding of plant evolution, community assembly and ecosystem functioning. A major challenge for the upcoming decades is to understand the functions and evolution of early life‐history traits, across levels of organization and ecological strategies. Although a variety of seed traits are critical for dispersal, persistence, germination timing and seedling establishment, only seed mass has been considered systematically. Here we suggest broadening the range of morphological, physiological and biochemical seed traits to add new understanding on plant niches, population dynamics and community assembly. The diversity of seed traits and functions provides an important challenge that will require international collaboration in three areas of research. First, we present a conceptual framework for a seed ecological spectrum that builds upon current understanding of plant niches. We then lay the foundation for a seed‐trait functional network, the establishment of which will underpin and facilitate trait‐based inferences. Finally, we anticipate novel insights and challenges associated with incorporating diverse seed traits into predictive evolutionary ecology, community ecology and applied ecology. If the community invests in standardized seed‐trait collection and the implementation of rigorous databases, major strides can be made at this exciting frontier of functional ecology.
The rapid expansion of urban areas worldwide is leading to native habitat loss and ecosystem fragmentation and degradation. Although the study of urbanisation’s impact on biodiversity is gaining increasing interest globally, there is still a disconnect between research recommendations and urbanisation strategies. Expansion of the Perth metropolitan area on the Swan Coastal Plain in south-western Australia, one of the world’s thirty-six biodiversity hotspots, continues to affect the Banksia Woodlands (BWs) ecosystem, a federally listed Threatened Ecological Community (TEC). Here, we utilise the framework of a 1989 review of the state of knowledge of BWs ecology and conservation to examine scientific advances made in understanding the composition, processes and functions of BWs and BWs’ species over the last 30 years. We highlight key advances in our understanding of the ecological function and role of mechanisms in BWs that are critical to the management of this ecosystem. The most encouraging change since 1989 is the integration of research between historically disparate ecological disciplines. We outline remaining ecological knowledge gaps and identify key research priorities to improve conservation efforts for this TEC. We promote a holistic consideration of BWs with our review providing a comprehensive document that researchers, planners and managers may reference. To effectively conserve ecosystems threatened by urban expansion, a range of stakeholders must be involved in the development and implementation of best practices to conserve and maintain both biodiversity and human wellbeing.
Litter samples from 24 flocks of broilers and four flocks of broiler breeders were evaluated for Salmonella contamination, water activity (Aw), and total moisture content (MC). The drag swab (DS) monitoring system was used to collect samples to detect Salmonella contamination. Simultaneously, representative samples of the uppermost surfaces of dry (loose) litter and wet (caked) litter were collected for Aw and MC analyses. On dry litter surfaces, high Aw values (0.90-0.95) were associated with flocks Salmonella-positive using DS; low Aw values (0.79-0.84) were associated with flocks Salmonella-negative by DS; and transition Aw values (0.85-0.89) were associated with flocks having an increased risk for the presence of Salmonella. The association of high Aw values with Salmonella risk was not observed for wet (caked) litter surfaces. Observations suggest that limiting Aw in the litter base of broiler houses may create a less favorable environment for the multiplication of Salmonella and thus a more hygienic environment for broiler production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.