This work presents a heuristic for describing the next best view location for an autonomous agent exploring an unknown environment. The approach considers each robot as a point mass with omnidirectional and unrestricted vision of the environment and line-of-sight communication operating in a polygonal environment which may contain holes. The number of robots in the team is always sufficient for full visual coverage of the space. The technique employed falls in the category of distributed visibility-based deployment algorithms which seek to segment the space based on each agent’s field of view with the goal of deploying each agent into the environment to create a visually connected series of agents which fully observe the previously unknown region. The contributions made to this field are a technique for utilizing linear programming methods to determine the solution to the next best observation (NBO) problem as well as a method for calculating multiple NBO points simultaneously. Both contributions are incorporated into an algorithm and deployed in a simulated environment built with MATLAB for testing. The algorithm successfully deployed agents into polygons which may contain holes. The efficiency of the deployment method was compared with random deployment methods to establish a performance metric for the proposed tactic. It was shown that the heuristic presented in this work performs better the other tested strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.