Inactivation of the PTCH tumor suppressor gene occurs in a subset of sporadic medulloblastomas, suggesting that alterations in the PTCH pathway may be important in the development of this tumor. In order to address the frequency of genetic alterations affecting genes in this pathway, we used a combination of loss of heterozygosity (LOH) analysis, single‐stranded conformational polymorphism (SSCP) analysis, and direct sequencing of DNA samples from sporadic primitive neuroectodermal tumors (PNETs). To identify alterations in the PTCH gene, we performed LOH analysis on 37 tumor DNA samples. Of those with matched constitutional DNA samples, one demonstrated LOH. Of those without matched constitutional DNA, six were homozygous with all markers. All exons of the PTCH gene were sequenced in these seven tumors, and three mutations were found. To identify alterations in the SHH and SMO genes, we analyzed all exons of both genes in 24 tumors with SSCP and sequenced any exons that showed aberrant band patterns. No mutations were found in either SHH or SMO in any tumor. We also identified the following genes as candidate tumor suppressors based on their roles in controlling hh/ptc signaling in Drosophila: EN‐1 and EN‐2, deletion of which results in a lack of cerebellar development in mice; SMAD family members 1–7, and protein kinase A subunits RIα, RIβ, RIIβ, Cα, and Cβ. Each of these genes was investigated in a panel of 24 matched constitutional and tumor DNA samples. Our search revealed no mutations in any of these genes. Thus, PTCH is the only gene in this complex pathway that is mutated with notable frequency in PNET. Genes Chromosomes Cancer 27:44–51, 2000. © 2000 Wiley‐Liss, Inc.
The PTCH gene encodes a putative tumor suppressor protein; germline alterations in PTCH have been found in patients with the nevoid basal cell carcinoma syndrome (NBCCS). Medulloblastoma, a brain tumor, develops in about 3% of NBCCS patients, and mutations in PTCH have also been described in a subset of sporadic medulloblastomas. The search for the causes of medulloblastoma has been hindered by the lack of an appropriate model system for this tumor type. Recently, a transgenic mouse hemizygous for the Ptch gene was generated by homologous recombination. Medulloblastomas were found in about 19% of these mice within the first 25 weeks after birth. The status of the wild-type PTCH allele in these tumors has not been investigated. For clearer definition of the role of PTCH as a tumor suppressor in medulloblastoma, 13 cerebellar tumors from transgenic Ptch ϩ/Ϫ mice were examined for alterations in the remaining Ptch allele. A single mutation was found in one tumor, a C-to-A substitution changing a tyrosine to a stop codon; all other tumors exhibited a wild-type sequence. Two tumors with normal Ptch cDNA were examined by in situ hybridization. Ptch cDNA was found in tumor cells but not in associated tumor stroma. We also examined the mRNA expression levels for the remaining Ptch allele, as well as for Gli1, a gene known to be transcriptionally activated by Ptch inactivation. Blot analysis of RNA from the 13 tumors shows that Ptch mRNA of appropriate size is expressed in all tumors at varying levels. Expression of Gli1 was increased in tumors compared to normal cerebellum. These results suggest that deletion of one copy of Ptch may be sufficient to promote medulloblastoma development in mice.
The PTCH gene encodes a putative tumor suppressor protein; germline alterations in PTCH have been found in patients with the nevoid basal cell carcinoma syndrome (NBCCS). Medulloblastoma, a brain tumor, develops in about 3% of NBCCS patients, and mutations in PTCH have also been described in a subset of sporadic medulloblastomas. The search for the causes of medulloblastoma has been hindered by the lack of an appropriate model system for this tumor type. Recently, a transgenic mouse hemizygous for the Ptch gene was generated by homologous recombination. Medulloblastomas were found in about 19% of these mice within the first 25 weeks after birth. The status of the wild-type PTCH allele in these tumors has not been investigated. For clearer definition of the role of PTCH as a tumor suppressor in medulloblastoma, 13 cerebellar tumors from transgenic Ptch ϩ/Ϫ mice were examined for alterations in the remaining Ptch allele. A single mutation was found in one tumor, a C-to-A substitution changing a tyrosine to a stop codon; all other tumors exhibited a wild-type sequence. Two tumors with normal Ptch cDNA were examined by in situ hybridization. Ptch cDNA was found in tumor cells but not in associated tumor stroma. We also examined the mRNA expression levels for the remaining Ptch allele, as well as for Gli1, a gene known to be transcriptionally activated by Ptch inactivation. Blot analysis of RNA from the 13 tumors shows that Ptch mRNA of appropriate size is expressed in all tumors at varying levels. Expression of Gli1 was increased in tumors compared to normal cerebellum. These results suggest that deletion of one copy of Ptch may be sufficient to promote medulloblastoma development in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.