Summary The establishment of pollen–pistil compatibility is strictly regulated by factors derived from both male and female reproductive structures. Highly diverse small cysteine‐rich proteins (CRPs) have been found to play multiple roles in plant reproduction, including the earliest stages of the pollen–stigma interaction. Secreted CRPs found in the pollen coat of members of the Brassicaceae, the pollen coat proteins (PCPs), are emerging as important signalling molecules that regulate the pollen–stigma interaction.Using a combination of protein characterization, expression and phylogenetic analyses we identified a novel class of Arabidopsis thaliana pollen‐borne CRPs, the PCP‐Bs (for pollen coat protein B‐class) that are related to embryo surrounding factor (ESF1) developmental regulators. Single and multiple PCP‐B mutant lines were utilized in bioassays to assess effects on pollen hydration, adhesion and pollen tube growth.Our results revealed that pollen hydration is severely impaired when multiple PCP‐Bs are lost from the pollen coat. The hydration defect also resulted in reduced pollen adhesion and delayed pollen tube growth in all mutants studied.These results demonstrate that At PCP‐Bs are key regulators of the hydration ‘checkpoint’ in establishment of pollen–stigma compatibility. In addition, we propose that interspecies diversity of PCP‐Bs may contribute to reproductive barriers in the Brassicaceae.
Christian de Duve first coined the expression “autophagy” during his seminal work on the discovery of lysosomes, which led to him being awarded the Nobel Prize in Physiology or Medicine in 1974. The term was adopted to distinguish degradation of intracellular components from the uptake and degradation of extracellular substances that he called “heterophagy”. Studies until the 1990s were largely observational/morphological-based until in 1993 Yoshinori Oshumi described a genetic screen in yeast undergoing nitrogen deprivation that led to the isolation of autophagy-defective mutants now better known as ATG (AuTophaGy-related) genes. The screen identified mutants that fell into 15 complementation groups implying that at least 15 genes were involved in the regulation of autophagy in yeast undergoing nutrient deprivation, but today, 41 yeast ATG genes have been described and many (though not all) have orthologues in humans. Attempts to identify the genetic basis of autophagy led to an explosion in its research and it's not surprising that in 2016 Yoshinori Oshumi was awarded the Nobel Prize in Physiology or Medicine. Our aim here is not to exhaustively review the ever-expanding autophagy literature (>60 papers per week), but to celebrate Yoshinori Oshumi's Nobel Prize by highlighting just a few aspects that are not normally extensively covered. In an accompanying mini-review we address the role of autophagy in early-diverging eukaryote parasites that like yeast, lack lysosomes and so use a digestive vacuole to degrade autophagosome cargo and also discuss how parasitized host cells react to infection by subverting regulation of autophagy.
A 96 member Melanesian kindred with 31 cases of iron overload is reported. Liver biopsies from 19 of these patients showed features similar to those of genetic haemochromatosis in Caucasians, but in contrast to the previous reported HLA-linked autosomal recessive pattern of inheritance for haemochromatosis, this family shows a pattern that is most consistent with autosomal dominant inheritance. This is suggested by involvement of three and possibly four consecutive generations, with a high frequency of transmission from parents to children and equal gender distribution. Linkage and segregation analysis supported dominant inheritance, with no demonstrable HLA linkage.
Evidence from human studies suggests that parasitic worm infection can protect humans against rheumatoid arthritis (RA) and this idea is strengthened by data generated in model systems. Although therapeutic use of parasitic worms is currently being explored, there are obvious benefits in pursuing drug development through identification and isolation of the 'active ingredients'. ES-62 is a secreted glycoprotein of the filarial nematode Acanthocheilonema viteae, which we have found to protect against the development of collagen-induced arthritis (CIA) in mice. ES-62 activity is dependent on the inflammatory phenotype of the local environment and protection arises via inhibition of Th17- and γδT cell-dependent IL-17 production. At the same time, NK and NK T cell IL-17 production is left intact, and such selectivity suggests that ES-62 might make a particularly attractive therapeutic for RA. However, as a potentially immunogenic protein, ES-62 is unsuitable for development as a drug. Nevertheless, ES-62 activity is dependent on covalently attached phosphorylcholine (PC) residues and we have therefore produced a library of PC-based drug-like ES-62 small-molecule analogues (SMAs) as an alternative therapeutic strategy. Screening this library, we have found an ES-62 SMA that mirrors ES-62 in protecting against CIA and by the same IL-17-dependent mechanism of action.
We have previously shown that ES-62, a phosphorylcholine (PC)-containing glycoprotein secreted by the parasitic filarial nematode Acanthocheilonema viteae targets dendritic cell (DC) responses, specifically by suppressing TLR4 signalling to inhibit Th1/Th17-driven inflammation. We have now investigated the molecular mechanisms underpinning such immunomodulation and show here that ES-62-mediated downregulation of protein kinase C-δ (PKC-δ), a TLR4-associated signalling mediator required for full activation of LPS-driven pro-inflammatory responses, is associated with induction of a low level of autophagic flux, as evidenced by upregulation and trafficking of p62 and LC3 and their consequent autophagolysosomal degradation. By contrast, the classical TLR4 ligand LPS, strongly upregulates p62 and LC3 expression but under such canonical TLR4 signalling this upregulation appears to reflect a block in autophagic flux, with these elements predominantly degraded in a proteasomal manner. These data are consistent with autophagic flux acting to homeostatically suppress proinflammatory DC responses and indeed, blocking of PKC-δ degradation by the autophagolysosomal inhibitors, E64d plus pepstatin A, results in abrogation of the ES-62-mediated suppression of LPS-driven release of IL-6, IL-12p70 and TNF-α by DCs. Thus, by harnessing this homeostatic regulatory mechanism, ES-62 can protect against aberrant inflammation, either to promote parasite survival or serendipitously, exhibit therapeutic potential in inflammatory disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.