Not peer-reviewed ABSTRACTValidating a quantitative scientific model requires comparing its predictions against many experimental observations, ideally from many labs, using transparent, robust, statistical comparisons. Unfortunately, in rapidly-growing fields like neuroscience, this is becoming increasingly untenable, even for the most conscientious scientists. Thus the merits and limitations of existing models, or whether a new model is an improvement on the state-of-the-art, is often unclear.Software engineers seeking to verify, validate and contribute to a complex software project rely on suites of simple executable tests, called "unit tests". Drawing inspiration from this practice, we previously developed SciUnit, an easy-to-use framework for developing data-driven "model validation tests" -executable functions, here written in Python. Each such test generates and statistically validates predictions from a model against one relevant feature of empirical data to produce a score indicating agreement between the model and the data. Suites of such validation tests can be used to clearly identify the merits and limitations of existing models and developmental progress on new models.Here we describe NeuronUnit, a library that builds upon SciUnit and integrates with several existing neuroinformatics resources to support the validation of single-neuron models using data gathered by neurophysiologists and neuroanatomists. NeuronUnit integrates with existing technologies like Jupyter, Pandas, NeuroML and resources such as NeuroElectro, The Allen Institute, and The Human Brain Project in order to make neuron model validation as easy as possible for computational neuroscientists.
The OpenWorm Project is an international open-source collaboration to create a multi-scale model of the organism Caenorhabditis elegans. At each scale, including subcellular, cellular, network and behaviour, this project employs one or more computational models that aim to recapitulate the corresponding biological system at that scale. This requires that the simulated behaviour of each model be compared with experimental data both as the model is continuously refined and as new experimental data become available. Here we report the use of SciUnit, a software framework for model validation, to attempt to achieve these goals. During project development, each model is continuously subjected to data-driven 'unit tests' that quantitatively summarize model-data agreement, identifying modelling progress and highlighting particular aspects of each model that fail to adequately reproduce known features of the biological organism and its components. This workflow is publicly visible via both GitHub and a web application and accepts community contributions to ensure that modelling goals are transparent and well-informed. This article is part of a discussion meeting issue 'Connectome to behaviour: modelling C. elegans at cellular resolution'.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.