Summary 1. A long‐lived bank of propagules consisting of eggs, seeds and spores is one mechanism that allows aquatic communities to survive drought. A drying (drought) event is, for aquatic organisms in a temporary wetland, a phase from which communities must recover. Such a dry phase is often considered a disturbance but should not be considered adverse or catastrophic for the organisms that have evolved to live in temporarily wet habitats. 2. This paper explores the parallels between the egg bank of zooplankton and the seed bank of aquatic plants as means of survival in temporary wetlands. The resilience of communities in temporary wetland ecosystems is assessed by examining dormancy, hatching, germination, establishment and reproduction of animals and plants from the egg and seed banks of wetlands with a range of wetting and drying regimes. 3. Both the zooplankton and aquatic plants of the temporary wetlands studied rely on their egg and seed banks as a means for surviving drying. These communities recover after the disturbance of drying by means of specific patterns of dormancy, dormancy breakage, hatching, germination, establishment and reproduction. Spatial and temporal patterns of species richness allow resilience through dormancy, as not all species are present at all sites and not all species hatch and germinate at the same time. Multiple generations in the egg and seed bank and complexity of environmental cues for dormancy breakage also contribute to the ecosystem's ability to recover after a drying event. A persistent egg and seed bank allows species‐rich communities to hatch, germinate and develop rapidly once dormancy is broken. Rapid establishment of species‐rich communities that reproduce rapidly and leave many propagules in the egg and seed bank also facilitates community recovery on flooding of a temporary wetland after a drying event. 4. To maintain the diversity of temporary wetland communities through droughts and floods we need to manage the dry and wet phases of wetlands. To conserve a wide range of wetland types, we need to maintain a variety of hydrological patterns across the landscape.
The wheatbelt region of Western Australia has been extensively cleared of indigenous vegetation for agriculture and is now severely affected by dryland salinity. Wetlands that were once freshwater are now saline and others are under threat, as are the animals and plants that inhabit them. Rising groundwater is also affecting the many naturally saline playas. To provide a framework for setting conservation priorities in this region a biological survey was undertaken, including sampling of aquatic invertebrates at 230 wetlands. In this paper, we have used data from the survey to summarise occurrence of species in relation to salinity. Total species richness at a wetland showed no response to salinity below 4.
Understanding patterns and processes in biological diversity is a critical task given current and rapid environmental change. Such knowledge is even more essential when the taxa under consideration are important ecological and evolutionary models. One of these cases is the monogonont rotifer cryptic species complex Brachionus plicatilis, which is by far the most extensively studied group of rotifers, is widely used in aquaculture, and is known to host a large amount of unresolved diversity. Here we collate a dataset of previously available and newly generated sequences of COI and ITS1 for 1273 isolates of the B. plicatilis complex and apply three approaches in DNA taxonomy (i.e. ABGD, PTP, and GMYC) to identify and provide support for the existence of 15 species within the complex. We used these results to explore phylogenetic signal in morphometric and ecological traits, and to understand correlation among the traits using phylogenetic comparative models. Our results support niche conservatism for some traits (e.g. body length) and phylogenetic plasticity for others (e.g. genome size).
-A biological survey of wetlands in the Wheatbelt and adjacent coastal areas of south-west Western Australia was undertaken to document the extent and distribution of the region's aquatic invertebrate diversity. Two hundred and thirty samples were collected from 223 wetlands, including freshwater swamps and lakes, salinised wetlands, springs, rivers, artificial wetlands (farm dams and small reservoirs), saline playas and coastal salt lakes between 1997 and 2000. The number of aquatic invertebrates identified from the region has been increased five-fold to almost 1000 species, of which 10% are new and known to date only from the Wheatbelt, and another 7% (mostly rotifers and cladocerans) are recorded in Western Australia for the first time. The survey has provided further evidence of a significant radiation of microcrustaceans in south-west Western Australia. Comparison of the fauna with other regions suggests that saline playas and ephemeral pools on granite outcrop support most of the species likely to be restricted to the Wheatbelt. Most species were collected infrequently, but for many of the least common species the Wheatbelt is likely to be on the periphery of their range.Cluster analysis was used to identify 10 assemblages of species with similar patterns of occurrence. Richness of these assemblages was best predicted by salinity and climate variables, or by physical habitat characteristics (granite outcrop pools, flowing water), although the amount of variation explained by models was variable (RZ 0.36 to 0.79). Fourteen groups of wetlands were recognised from cluster analysis of sites based on community composition. Wetlands of these groups differed primarily in their physical habitat, salinity, degree of secondary salinisation, pH and their occurrence across geographic and climatic gradients. Some assemblages were closely associated with particular wetland groups but others occurred across a range of wetland types. Salinity was identified as the primary influence on the occurrence of aquatic invertebrates in the Wheatbelt, although other variables are important in particular situations.Secondary salinisation dramatically alters composition and richness of freshwater aquatic invertebrate communities, involving gradual replacement of salt sensitive species by a smaller set of salt tolerant and halophilic species as salinity increases. These altered communities are relatively homogeneous compared with those of freshwater or naturally saline wetlands. Communities of naturally saline wetlands are comprised of a heterogeneous array of halophilic species, but these communities and species are also threatened by altered hydrology and chemistry associated with dryland salinity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.