Background Many patients receiving dialysis in the USA share the socioeconomic characteristics of underserved communities, and undergo routine monthly laboratory testing, facilitating a practical, unbiased, and repeatable assessment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroprevalence. Methods For this cross-sectional study, in partnership with a central laboratory that receives samples from approximately 1300 dialysis facilities across the USA, we tested the remainder plasma of 28 503 randomly selected adult patients receiving dialysis in July, 2020, using a spike protein receptor binding domain total antibody chemiluminescence assay (100% sensitivity, 99·8% specificity). We extracted data on age, sex, race and ethnicity, and residence and facility ZIP codes from the anonymised electronic health records, linking patient-level residence data with cumulative and daily cases and deaths per 100 000 population and with nasal swab test positivity rates. We standardised prevalence estimates according to the overall US dialysis and adult population, and present estimates for four prespecified strata (age, sex, region, and race and ethnicity). Findings The sampled population had similar age, sex, and race and ethnicity distribution to the US dialysis population, with a higher proportion of older people, men, and people living in majority Black and Hispanic neighbourhoods than in the US adult population. Seroprevalence of SARS-CoV-2 was 8·0% (95% CI 7·7–8·4) in the sample, 8·3% (8·0–8·6) when standardised to the US dialysis population, and 9·3% (8·8–9·9) when standardised to the US adult population. When standardised to the US dialysis population, seroprevalence ranged from 3·5% (3·1–3·9) in the west to 27·2% (25·9–28·5) in the northeast. Comparing seroprevalent and case counts per 100 000 population, we found that 9·2% (8·7–9·8) of seropositive patients were diagnosed. When compared with other measures of SARS-CoV-2 spread, seroprevalence correlated best with deaths per 100 000 population (Spearman's ρ=0·77). Residents of non-Hispanic Black and Hispanic neighbourhoods experienced higher odds of seropositivity (odds ratio 3·9 [95% CI 3·4–4·6] and 2·3 [1·9–2·6], respectively) compared with residents of predominantly non-Hispanic white neighbourhoods. Residents of neighbourhoods in the highest population density quintile experienced increased odds of seropositivity (10·3 [8·7–12·2]) compared with residents of the lowest density quintile. County mobility restrictions that reduced workplace visits by at least 5% in early March, 2020, were associated with lower odds of seropositivity in July, 2020 (0·4 [0·3–0·5]) when compared with a reduction of less than 5%. Interpretation During the first wave of the COVID-19 pandemic, fewer than 10% of the US adult population formed antibodies against SARS-CoV-2, and fewer than 10% of those with antibodies were diagnosed. Public health efforts to limit SARS-CoV...
Comparative genomic hybridization (CGH) makes it possible to detect losses and gains of DNA sequences along all chromosomes in a tumor specimen based on the hybridization of differentially labeled tumor and normal DNA to normal human metaphase chromosomes. In this study, CGH analysis was applied to the identification of genomic imbalances in 26 bladder cancers in order to gain information on the genetic events underlying the development and progression of this malignancy. Losses affecting 11p, 11q, 8p, 9, 17p, 3p, and 12q were all seen in more than 20% of the tumors. The minimal common region of loss in each chromosome was identified based on the analysis of overlapping deletions in different tumors. Gains of DNA sequences were most often found at chromosomal regions distinct from the locations of currently known oncogenes. The bands involved in more than 10% of the tumors were 8q21, 13q21-q34, 1q31, 3q24-q26, and 1p22. In conclusion, these CGH data highlight several previously unreported genetic alterations in bladder cancer. Further detailed studies of these regions with specific molecular genetic techniques may lead to the identification of tumor suppressor genes and oncogenes that play an important role in bladder tumorigenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.