The human genome encodes seven APOBEC3 (A3) cytidine deaminases with potential antiretroviral activity: A3A, A3B, A3C, A3DE, A3F, A3G, and A3H. A3G was the first identified to block replication of human immunodeficiency virus type 1 (HIV-1) and many other retroviruses. A3F, A3B, and A3DE were shown later to have similar activities. HIV-1 produces a protein called Vif that is able to neutralize the antiretroviral activities of A3DE, A3F, and A3G, but not A3B. Only the antiretroviral activity of A3H remains to be defined due to its poor expression in cell culture. Here, we studied the mechanism impairing A3H expression. When primate A3H sequences were compared, a premature termination codon was identified on the fifth exon of the human and chimpanzee A3H genes, which significantly decreased their protein expression. It causes a 29-residue deletion from the C terminus, and this truncation did not reduce human A3H protein stability. However, the mRNA levels of the truncated gene were significantly decreased. Human A3H protein expression could be restored to a normal level either by repairing this truncation or through expression from a vector containing an intron from human cytomegalovirus. Once expression was optimized, human A3H could reduce HIV-1 infectivity up to 150-fold. Importantly, HIV-1 Vif failed to neutralize A3H activity. Nevertheless, extensive sequence analysis could not detect any significant levels of G-to-A mutation in the HIV-1 genome by human A3H. Thus, A3H inhibits HIV-1 replication potently by a cytidine deamination-independent mechanism, and optimizing A3H expression in vivo should represent a novel therapeutic strategy for HIV-1 treatment.
VRS1 is the first isolated strain of vancomycin-resistant Staphylococcus aureus (VRSA) found to carry the vanA gene complex previously described in Enterococcus. Under vancomycin pressure, VRS1 makes aberrant cell walls consisting of stem tetrapeptide and depsipeptide that lack the terminal D-Ala-D-Ala residues targeted by vancomycin. Previous data have suggested that this aberrant cell wall is not cross-linked by PBP2a, the enzyme responsible for cell wall transpeptidation in the presence of -lactam antibiotics. We examined the efficacy of treating VRS1 with a combination of vancomycin and -lactam antibiotics in vitro and in vivo. We found that the MIC of oxacillin for VRS1 decreased from >256 g/ml to <1 g/ml in the presence of vancomycin. Using the rabbit model of endocarditis, we treated VRS1-infected rabbits with nafcillin alone, vancomycin alone, or a combination of nafcillin and vancomycin. Treatment with nafcillin in combination with vancomycin cleared bloodstream infections within 24 h and sterilized 12/13 spleens (92%), as well as 8/13 kidneys (62%), following 3 days of treatment. Mean aortic valve vegetation counts were reduced 3.48 log 10 CFU/g with the combination therapy (compared to untreated controls) and were significantly lower than with either vancomycin or nafcillin given alone. VRS1 was extremely virulent in this model, as no untreated rabbits survived the 3-day trial. Treatment of clinical infections due to VRSA with the combination of vancomycin and -lactams may be an option, based on these results.
Background: Bacteria in the Streptococcus milleri group (S. anginosus, S. constellatus, and S. intermedius) are associated with bacteremia and abscess formation. While most reports of Streptococcus milleri group (SMG) infection occur in patients with underlying medical conditions, SMG infections during pregnancy have been documented. However, SMG infections in pregnant women are associated with either neonatal or maternal puerperal sepsis. Albeit rare, S. milleri spinal-epidural abscess in pregnancy has been reported, always as a complication of spinal-epidural anesthesia. We report a case of spinal-epidural abscess caused by SMG in a young, pregnant woman without an antecedent history of spinal epidural anesthesia and without any underlying risk factors for invasive streptococcal disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.