Reducing the impacts of feral cats (Felis catus) is a priority for conservation managers across the globe, and success in achieving this aim requires a detailed understanding of the species’ ecology across a broad spectrum of climatic and environmental conditions. We reviewed the diet of the feral cat across Australia and on Australian territorial islands, seeking to identify biogeographical patterns in dietary composition and diversity, and use the results to consider how feral cats may best be managed
Context Many Australian mammal species are highly susceptible to predation by introduced domestic cats (Felis catus) and European red foxes (Vulpes vulpes). These predators have caused many extinctions and have driven large distributional and population declines for many more species. The serendipitous occurrence of, and deliberate translocations of mammals to, ‘havens’ (cat- and fox-free offshore islands, and mainland fenced exclosures capable of excluding cats and foxes) has helped avoid further extinction. Aims The aim of this study was to conduct a stocktake of current island and fenced havens in Australia and assess the extent of their protection for threatened mammal taxa that are most susceptible to cat and fox predation. Methods Information was collated from diverse sources to document (1) the locations of havens and (2) the occurrence of populations of predator-susceptible threatened mammals (naturally occurring or translocated) in those havens. The list of predator-susceptible taxa (67 taxa, 52 species) was based on consensus opinion from >25 mammal experts. Key results Seventeen fenced and 101 island havens contain 188 populations of 38 predator-susceptible threatened mammal taxa (32 species). Island havens cover a larger cumulative area than fenced havens (2152km2 versus 346km2), and reach larger sizes (largest island 325km2, with another island of 628km2 becoming available from 2018; largest fence: 123km2). Islands and fenced havens contain similar numbers of taxa (27 each), because fenced havens usually contain more taxa per haven. Populations within fences are mostly translocated (43 of 49; 88%). Islands contain translocated populations (30 of 139; 22%); but also protect in situ (109) threatened mammal populations. Conclusions Havens are used increasingly to safeguard threatened predator-susceptible mammals. However, 15 such taxa occur in only one or two havens, and 29 such taxa (43%) are not represented in any havens. The taxon at greatest risk of extinction from predation, and in greatest need of a haven, is the central rock-rat (Zyzomys pedunculatus). Implications Future investment in havens should focus on locations that favour taxa with no (or low) existing haven representation. Although havens can be critical for avoiding extinctions in the short term, they cover a minute proportion of species’ former ranges. Improved options for controlling the impacts of cats and foxes at landscape scales must be developed and implemented.
Multilocus phylogeography can uncover taxonomically unrecognized lineage diversity across complex biomes. The Australian monsoonal tropics include vast, ecologically intact savanna-woodland plains interspersed with ancient sandstone uplands. Although recognized in general for its high species richness and endemism, the biodiversity of the region remains underexplored due to its remoteness. This is despite a high rate of ongoing species discovery, especially in wetter regions and for rock-restricted taxa. To provide a baseline for ongoing comparative analyses, we tested for phylogeographic structure in an ecologically generalized and widespread taxon, the gecko Heteronotia binoei. We apply coalescent analyses to multilocus sequence data (mitochondrial DNA and eight nuclear DNA introns) from individuals sampled extensively and at fine scale across the region. The results demonstrate surprisingly deep and geographically nested lineage diversity. Several intra-specific clades previously shown to be endemic to the region were themselves found to contain multiple, short-range lineages. To infer landscapes with concentrations of unique phylogeographic diversity, we probabilistically estimate the ranges of lineages from point data and then, combining these estimates with the nDNA species tree, estimate phyloendemism across the region. Highest levels of phyloendemism occur in northern Top End, especially on islands, across the topographically complex Arnhem escarpment, and across the sandstone ranges of the western Gulf region. These results drive home that deep phylogeographic structure is prevalent in tropical low-dispersal taxa, even ones that are ubiquitous across geography and habitats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.