COVID-19 is a wicked problem for policy makers internationally as the complexity of the pandemic transcends health, environment, social and economic boundaries. Many countries are focusing on two key responses, namely virus containment and financial measures, but fail to recognise other aspects. The systems approach, however, enables policy makers to design the most effective strategies and reduce the unintended consequences. To achieve fundamental change, it is imperative to firstly identify the “right” interventions (leverage points) and implement additional measures to reduce negative consequences. To do so, a preliminary causal loop diagram of the COVID-19 pandemic was designed to explore its influence on socio-economic systems. In order to transcend the “wait and see” approach, and create an adaptive and resilient system, governments need to consider “deep” leverage points that can be realistically maintained over the long-term and cause a fundamental change, rather than focusing on “shallow” leverage points that are relatively easy to implement but do not result in significant systemic change.
A sequential approach to combining two established modeling techniques (systems thinking and Bayesian Belief Networks; BBNs) was developed and applied to climate change adaptation research within the South East Queensland Climate Adaptation Research Initiative (SEQ-CARI). Six participatory workshops involving 66 stakeholders based within SEQ produced six system conceptualizations and 22 alpha-level BBNs. The outcomes of the initial systems modeling exercise successfully allowed the selection of critical determinants of key response variables for in depth analysis within more homogeneous, sector-based groups of participants. Using two cases, this article focuses on the processes and methodological issues relating to the use of the BBN modeling technique when the data are based on expert opinion.The study expected to find both generic and specific determinants of adaptive capacity based on the perceptions of the stakeholders involved. While generic determinants were found (e.g. funding and awareness levels), sensitivity analysis identified the importance of pragmatic, context-based determinants, which also had methodological implications. The article raises questions about the most appropriate scale at which the methodology applied can be used to identify useful generic determinants of adaptive capacity when, at the scale used, the most useful determinants were sector specific. Comparisons between individual BBN conditional probabilities identified diverging and converging beliefs, and that the sensitivity of response variables to direct descendant nodes was not always perceived consistently. It was often the accompanying narrative that provided important contextual information that explained observed differences, highlighting the benefits of using critical narrative with modeling tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.