Although remission rates for metastatic melanoma are generally very poor, some patients can survive for prolonged periods following metastasis. We used gene expression profiling, mitotic index (MI), and quantification of tumor infiltrating leukocytes (TILs) and CD3؉ cells in metastatic lesions to search for a molecular basis for this observation and to develop improved methods for predicting patient survival. We identified a group of 266 genes associated with postrecurrence survival. Genes positively associated with survival were predominantly immune response related (e.g., ICOS, CD3d, ZAP70, TRAT1, TARP, GZMK, LCK, CD2, CXCL13, CCL19, CCR7, VCAM1) while genes negatively associated with survival were cell proliferation related (e.g., PDE4D, CDK2, GREF1, NUSAP1, SPC24). Furthermore, any of the 4 parameters (prevalidated gene expression signature, TILs, CD3, and in particular MI) improved the ability of Tumor, Node, Metastasis (TNM) staging to predict postrecurrence survival; MI was the most significant contributor (HR ؍ 2.13, P ؍ 0.0008). An immune response gene expression signature and presence of TILs and CD3؉ cells signify immune surveillance as a mechanism for prolonged survival in these patients and indicate improved patient subcategorization beyond current TNM staging.gene expression analysis ͉ immune response ͉ TNM staging ͉ tumor infiltrating leukocytes
The rationale for using small molecule inhibitors of oncogenic proteins as cancer therapies depends, at least in part, on the assumption that metastatic tumors are primarily clonal with respect to mutant oncogene. With the emergence of BRAFV600E as a therapeutic target, we investigated intra- and inter-tumor heterogeneity in melanoma using detection of the BRAFV600E mutation as a marker of clonality. BRAF mutant-specific PCR (MS-PCR) and conventional sequencing were performed on 112 tumors from 73 patients, including patients with matched primary and metastatic specimens (n = 18). Nineteen patients had tissues available from multiple metastatic sites. Mutations were detected in 36/112 (32%) melanomas using conventional sequencing, and 85/112 (76%) using MS-PCR. The better sensitivity of the MS-PCR to detect the mutant BRAFV600E allele was not due to the presence of contaminating normal tissue, suggesting that the tumor was comprised of subclones of differing BRAF genotypes. To determine if tumor subclones were present in individual primary melanomas, we performed laser microdissection and mutation detection via sequencing and BRAFV600E-specific SNaPshot analysis in 9 cases. Six of these cases demonstrated differing proportions of BRAFV600Eand BRAFwild-type cells in distinct microdissected regions within individual tumors. Additional analyses of multiple metastatic samples from individual patients using the highly sensitive MS-PCR without microdissection revealed that 5/19 (26%) patients had metastases that were discordant for the BRAFV600E mutation. In conclusion, we used highly sensitive BRAF mutation detection methods and observed substantial evidence for heterogeneity of the BRAFV600E mutation within individual melanoma tumor specimens, and among multiple specimens from individual patients. Given the varied clinical responses of patients to BRAF inhibitor therapy, these data suggest that additional studies to determine possible associations between clinical outcomes and intra- and inter-tumor heterogeneity could prove fruitful.
Purpose To identify a melanoma miRNA expression signature that is predictive of outcome and then evaluate its potential to improve risk stratification when added to the standard of care staging criteria. Experimental design Total RNA was extracted from 59 formalin-fixed paraffin embedded (FFPE) melanoma metastases and hybridized to miRNA arrays containing 911 probes. We then correlated miRNA expression with post-recurrence survival and other clinicopathological criteria. Results We identified a signature of 18 miRNAs whose overexpression was significantly correlated with longer survival, defined as more than 18 months post-recurrence survival. Subsequent cross-validation showed that a small subset of these miRNAs can predict post-recurrence survival in metastatic melanoma with an estimated accuracy of 80.2% [95% CI: 79.8%, 80.6%]. In contrast to standard of care staging criteria, this six-miRNA signature significantly stratified stage III patients into “better” and “worse” prognostic categories, and a multivariate Cox regression analysis revealed the signature to be an independent predictor of survival. Furthermore, we demonstrated that most miRNAs from the signature also showed differential expression between patients with “better” and “worse prognosis” in the corresponding paired primary melanoma. Conclusion MiRNA signatures have potential as clinically relevant biomarkers of prognosis in metastatic melanoma. Our data suggest that molecularly-based models of risk assessment can improve the standard staging criteria and support the incorporation of miRNAs into such models.
BackgroundIdentification of melanoma patients at high risk for recurrence and monitoring for recurrence are critical for informed management decisions. We hypothesized that serum microRNAs (miRNAs) could provide prognostic information at the time of diagnosis unaccounted for by the current staging system and could be useful in detecting recurrence after resection.MethodsWe screened 355 miRNAs in sera from 80 melanoma patients at primary diagnosis (discovery cohort) using a unique quantitative reverse transcription-PCR (qRT-PCR) panel. Cox proportional hazard models and Kaplan-Meier recurrence-free survival (RFS) curves were used to identify a miRNA signature with prognostic potential adjusting for stage. We then tested the miRNA signature in an independent cohort of 50 primary melanoma patients (validation cohort). Logistic regression analysis was performed to determine if the miRNA signature can determine risk of recurrence in both cohorts. Selected miRNAs were measured longitudinally in subsets of patients pre-/post-operatively and pre-/post-recurrence.ResultsA signature of 5 miRNAs successfully classified melanoma patients into high and low recurrence risk groups with significant separation of RFS in both discovery and validation cohorts (p = 0.0036, p = 0.0093, respectively). Significant separation of RFS was maintained when a logistic model containing the same signature set was used to predict recurrence risk in both discovery and validation cohorts (p < 0.0001, p = 0.033, respectively). Longitudinal expression of 4 miRNAs in a subset of patients was dynamic, suggesting miRNAs can be associated with tumor burden.ConclusionOur data demonstrate that serum miRNAs can improve accuracy in identifying primary melanoma patients with high recurrence risk and in monitoring melanoma tumor burden over time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.