The energies and configurations of interstitials and vacancies in the ordered compounds CuTi and CuTi 2 were determined using atomistic simulation with realistic embedded-atom potentials. The formation energy of an antisite pair was found to be 0.385 and 0.460 eV in CuTi and CuTi 2 , respectively. In both compounds, the creation of a vacancy by the removal of either a Cu or Ti atom resulted in a vacant Cu site, with an adjacent antisite defect in the case of the Ti vacancy. The vacant Cu site in CuTi was found to be very mobile within two adjacent (001) Cu planes, with a migration energy of 0.19 eV, giving rise to two-dimensional migration. The vacancy migration energy across (001) Ti planes, however, was 1.32 eV, which could be lowered to 0.75 or 0.60 eV if one or two Cu antisite defects were initially present in these planes. In CuTi 2 , the vacancy migration energy of 0.92 eV along the (001) Cu plane was significantly higher than in CuTi. The effective vacancy formation energies were calculated to be 1.09 eV and 0.90 eV in CuTi and CuTi 2 , respectively. Interstitials created by inserting either a Cu or Ti atom had complicated configurations in which a Cu (111) split interstitial was surrounded by two or three Ti antisite defects. The interstitial formation energy was estimated to be 1.7 eV in CuTi and 1.9 eV in CuTi 2 .
The energies and configurations of interstitials and vacancies in the B2 ordered compounds NiTi and FeTi were calculated using atomistic simulation. The stable configuration of a vacancy after the removal of an Ni atom was a vacant Ni site; similarly, the removal of an Fe atom in FeTi resulted in a vacant Fe site. Removal of a Ti atom in both compounds, however, resulted in a vacant Ni or Fe site and an adjacent antisite defect. The effective vacancy formation energies in NiTi and FeTi were calculated to be 1.48 and 1.07 eV, respectively. Interstitials in NiTi formed split <111> configurations consisting of a Ni-Ni dumbbell oriented in the <111> direction with one or two adjacent antisite defects. The Fe interstitial in FeTi had a similar configuration, except the dumbbell contained Fe atoms. The Ti interstitial in FeTi formed an <110> Fe-Fe dumbbell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.