Despite major advances in modern drug discovery and development, the number of new drug approvals has not kept pace with the increased cost of their development. Increasingly, innovative uses of biomarkers are employed in an attempt to speed new drugs to market. Still, widespread adoption of biomarkers is impeded by limited experience interpreting biomarker data and an unclear regulatory climate. Key differences preclude the direct application of existing validation paradigms for drug analysis to biomarker research. Following the AAPS 2003 Biomarker Workshop (J. W. Lee, R. S. Weiner, J. M. Sailstad, et al. Method validation and measurement of biomarkers in nonclinical and clinical samples in drug development. A conference report. Pharm Res 22:499-511, 2005), these and other critical issues were addressed. A practical, iterative, "fit-for-purpose" approach to biomarker method development and validation is proposed, keeping in mind the intended use of the data and the attendant regulatory requirements associated with that use. Sample analysis within this context of fit-for-purpose method development and validation are well suited for successful biomarker implementation, allowing increased use of biomarkers in drug development.
The Third AAPS/FDA Bioanalytical Workshop, entitled "Quantitative Bioanalytical Methods Validation and Implementation: Best Practices for Chromatographic and Ligand Binding Assays" was held on May 1-3, 2006 in Arlington, VA. The format of this workshop consisted of presentations on bioanalytical topics, followed by discussion sessions where these topics could be debated, with the goal of reaching consensus, or identifying subjects where addition input or clarification was required. The discussion also addressed bioanalytical validation requirements of regulatory agencies, with the purpose of clarifying expectations for regulatory submissions. The proceedings from each day were reviewed and summarized in the evening sessions among the speakers and moderators of the day. The consensus summary was presented back to the workshop on the last day and was further debated. This communication represents the distillate of the workshop proceedings and provides the summary of consensus reached and also contains the validation topics where no consensus was reached.
In this consensus document, we attempt to make recommendations that are based on bioanalytical best practices and statistical thinking for development and validation of LBAs.
Psoriasis is a multifactorial disease of uncertain etiology that affects approximately 2% of the population (1). Psoriatic lesions are characterized by a clinical triad consisting of skin induration, scaling, and erythema. The histologic correlates of these clinical findings include inflammation, abnormal keratinocyte proliferation/terminal differentiation, and dermal angiogenesis. The inflammatory infiltrate, particularly pronounced at the dermal-epidermal junction, consists largely of activated T cells and antigen-presenting cells (APCs) and precedes the development of epidermal hyperproliferation (2). Increased levels of inflammatory cytokines have been detected in lesional psoriatic epidermis, which may result in the potentiation of T-cell activation (3) as well as hyperproliferation and accelerated differentiation of keratinocytes (4, 5). These and other data derived from T cell-based therapeutics (6-8) suggest that activated T cells play an important role in triggering and perpetuating the disease. Engagement of the B7 family of molecules on antigen-presenting cells with their T cell-associated ligands, CD28 and CD152 (cytotoxic T lymphocyte-associated antigen-4 [CTLA-4]), provides a pivotal costimulatory signal in T-cell activation. We investigated the role of the CD28/CD152 pathway in psoriasis in a 26-week, phase I, open-label dose-escalation study. The importance of this pathway in the generation of humoral immune responses to T cell-dependent neoantigens, bacteriophage φX174 and keyhole limpet hemocyanin, was also evaluated. Forty-three patients with stable psoriasis vulgaris received 4 infusions of the soluble chimeric protein CTLA4Ig (BMS-188667). Forty-six percent of all study patients achieved a 50% or greater sustained improvement in clinical disease activity, with progressively greater effects observed in the highest-dosing cohorts. Improvement in these patients was associated with quantitative reduction in epidermal hyperplasia, which correlated with quantitative reduction in skin-infiltrating T cells. No markedly increased rate of intralesional T-cell apoptosis was identified, suggesting that the decreased number of lesional T cells was probably likely attributable to an inhibition of T-cell proliferation, T-cell recruitment, and/or apoptosis of antigen-specific T cells at extralesional sites. Altered antibody responses to T cell-dependent neoantigens were observed, but immunologic tolerance to these antigens was not demonstrated. This study illustrates the importance of the CD28/CD152 pathway in the pathogenesis of psoriasis and suggests a potential therapeutic use for this novel immunomodulatory approach in an array of T cell-mediated diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.