Background: Zinc (Zn) is an essential trace element and it is abundant in connective tissues, however biological roles of Zn and its transporters in those tissues and cells remain unknown.
Bruck syndrome (BS) is a recessively-inherited phenotypic disorder featuring the unusual combination of skeletal changes resembling osteogenesis imperfecta (OI) with congenital contractures of the large joints. Clinical heterogeneity is apparent in cases reported thus far. While the genes coding for collagen 1 chains are unaffected in BS, there is biochemical evidence for a defect in the hydroxylation of lysine residues in collagen 1 telopeptides. One BS locus has been mapped at 17p12, but more recently, two mutations in the lysyl hydroxylase 2 gene (PLOD2, 3q23-q24) have been identified in BS, showing genetic heterogeneity. The proportion of BS cases linked to 17p22 (BS type 1) or caused by mutations in PLOD2 (BS type 2) is still uncertain, and phenotypic correlations are lacking. We report on a boy who had congenital contractures with pterygia at birth and severe OI-like osteopenia and multiple fractures. His urine contained high amounts of hydroxyproline but low amounts of collagen crosslinks degradation products; and he was shown to be homozygous for a novel mutation leading to an Arg598His substitution in PLOD2. The mutation is adjacent to the two mutations previously reported (Gly601Val and Thr608Ile), suggesting a functionally important hotspot in PLOD2. The combination of pterygia with bone fragility, as illustrated by this case, is difficult to explain; it suggests that telopeptide lysyl hydroxylation must be involved in prenatal joint formation and morphogenesis. Collagen degradation products in urine and mutation analysis of PLOD2 may be used to diagnose BS and differentiate it from OI.
The term "spondyloperipheral dysplasia" (SPD) has been applied to the unusual combination of platyspondyly and brachydactyly as observed in a small number of individuals. The reported cases show wide clinical variability and the nosologic status and spectrum of this condition are still ill defined. Zabel et al. [1996: Am J Med Genet 63(1):123-128] reported an individual with short stature and SPD who was heterozygous for a frameshift mutation in the C-propeptide domain of COL2A1. To explain the additional finding of brachydactyly that is not an usual feature of the type II collagenopathies, it was postulated that the nature of the mutation induced precocious calcification and premature fusion of metacarpal and phalangeal growth plates. The C-propeptide of collagen II had previously been found to promote calcification ("chondrocalcin"). We have ascertained two further individuals with clinical and radiological findings of a type II collagenopathy in infancy who developed brachydactyly type E like changes of fingers and toes in childhood. In both individuals, heterozygosity for novel, distinct mutations in the C-propeptide coding region of COL2A1 were found. Although all three mutations (the one previously reported and the two novel ones) predict premature termination, their location close to the 3'-end of the mRNA probably protects them from nonsense-mediated decay and allows for synthesis of mutant procollagen chains. However, loss of crucial cysteine residues or other sequences essential for trimerization prevents these chains from associating and participating in procollagen helix formation, and thus leads to accumulation in the ER-consistent with EM findings. The mechanism leading to precocious fusion of phalangeal epiphyses remains to be explored. The consistency of clinical, radiographic, and molecular findings in these three unrelated individuals confirms SPD as a distinct nosologic entity. The diagnosis of SPD is suggested by the appearance of brachydactyly in a child who has clinical and radiographic features of a collagen II disorder.
Background: Zinc (Zn) is an essential trace element and it is abundant in connective tissues, however biological roles of Zn and its transporters in those tissues and cells remain unknown.Methodology/Principal Findings: Here we report that mice deficient in Zn transporter Slc39a13/Zip13 show changes in bone, teeth and connective tissue reminiscent of the clinical spectrum of human Ehlers-Danlos syndrome (EDS). The Slc39a13 knockout (Slc39a13-KO) mice show defects in the maturation of osteoblasts, chondrocytes, odontoblasts, and fibroblasts. In the corresponding tissues and cells, impairment in bone morphogenic protein (BMP) and TGF-b signaling were observed. Homozygosity for a SLC39A13 loss of function mutation was detected in sibs affected by a unique variant of EDS that recapitulates the phenotype observed in Slc39a13-KO mice.Conclusions/Significance: Hence, our results reveal a crucial role of SLC39A13/ZIP13 in connective tissue development at least in part due to its involvement in the BMP/TGF-b signaling pathways. The Slc39a13-KO mouse represents a novel animal model linking zinc metabolism, BMP/TGF-b signaling and connective tissue dysfunction.
Metaphyseal dysplasia, Spahr type (MDST; OMIM 250400) was described in 1961 based on the observation of four children in one family who had rickets-like metaphyseal changes but normal blood chemistry and moderate short stature. Its molecular basis and nosologic status remained unknown. We followed up on those individuals and diagnosed the disorder in an additional member of the family. We used exome sequencing to ascertain the underlying mutation and explored its consequences on threedimensional models of the affected protein. The MDST phenotype is associated with moderate short stature and knee pain in adults, while extra-skeletal complications are not observed. The sequencing showed that MDST segregated with a c.619T>G single nucleotide transversion in MMP13. The predicted nonconservative amino acid substitution, p.Trp207Gly, disrupts a crucial hydrogen bond in the calcium-binding region of the catalytic domain of the matrix metalloproteinase, MMP13. The MDST phenotype is associated with recessive MMP13 mutations, confirming the importance of this metalloproteinase in the metaphyseal growth plate. Dominant MMP13 mutations have been associated with metaphyseal anadysplasia (OMIM 602111), while a single child homozygous for a MMP13 mutation had been previously diagnosed as "recessive metaphyseal anadysplasia," that we conclude is the same nosologic entity as MDST. Molecular confirmation of MDST allows distinction of it from dominant conditions (e.g., metaphyseal dysplasia, Schmid type; OMIM # 156500) and from more severe multi-system conditions (such as cartilage-hair hypoplasia; OMIM # 250250) and to give precise recurrence risks and prognosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.