This study aims to investigate the effect of magnesium (Mg) doping on the characteristics and antibacterial properties of copper oxide (CuO) nanoparticles (NPs). The Mg-doped CuO NPs were fabricated by the co-precipitation method. NPs were characterized by X-ray Powder Diffraction (XRD), Transmission Electron Microscope (TEM), Energy Dispersive X-ray (EDX) analysis, Fourier Transform Infrared Spectroscopy (FTIR), and Photoluminescence (PL). Broth microdilution, agar-well diffusion, and time-kill assays were employed to assess the antibacterial activity of the NPs. XRD revealed the monoclinic structure of CuO NPs and the successful incorporation of Mg dopant to the Cu1−xMgxO NPs. TEM revealed the spherical shape of the CuO NPs. Mg doping affected the morphology of NPs and decreased their agglomeration. EDX patterns confirmed the high purity of the undoped and Mg-doped CuO NPs. FTIR analysis revealed the shifts in the Cu–O bond induced by the Mg dopant. The position, width, and intensity of the PL bands were affected as a result of Mg doping, which is an indication of vacancies. Both undoped and doped CuO NPs exhibited significant antibacterial capacities. NPs inhibited the growth of Gram-positive and Gram-negative bacteria. These results highlight the potential use of Mg-doped CuO NPs as an antibacterial agent.
Doping in metal oxide systems is being chased by many researchers since it is enhancing their properties. In the present study, Cu1-xMgxO nanoparticles, capped with EDTA were synthesized by the chemical co-precipitation method, with x = 0.000, 0.005, 0.010, 0.015, and 0.020, and further characterized by different techniques. The impact of doping by Mg2+ ions on the structural, optical, and magnetic properties of CuO nanoparticles was investigated and the antibacterial activity of the synthesized nanoparticles was studied by antibiofilm screening. The X-ray Powder Diffraction (XRD) patterns show the formation of a pure CuO phase with a good incorporation of Mg-dopant into the CuO lattice due to the comparable ionic radii of Cu2+ and Mg2+ ions. The Mg-dopant increases the crystallite size from 25 nm (at x = 0.000) to 28.12 nm (at x = 0.020). The Transmission Electron Microscope (TEM) images reveal the effect of Mg-doping on the morphology of CuO nanoparticles by decreasing their agglomeration, resulting in more uniform spherical-shaped nanoparticles. Energy Dispersive X-ray (EDX) and X-ray Photoelectron Spectroscopy (XPS) confirm the purity and the successful development of Mg-doped CuO nanoparticles. The changes in the characteristic vibrational modes of CuO are studied by Raman spectra, upon Mg-doping. Furthermore, the optical properties explored by Ultraviolet-Visible (UV-Vis) spectroscopy reveal a redshift of the absorption peaks of CuO nanoparticles due to the Mg-doping. The energy gap (Eg) is affected by Mg-doping, where its broadening is attributed to the quantum confinement effect in CuO. The magnetic properties were investigated by Vibrating Sample Magnetometer (VSM) at room temperature. Cu1-xMgxO nanoparticles have combined paramagnetic and weak ferromagnetic behaviors. Besides, Cu1-xMgxO nanoparticles exhibited significant antibiofilm effects. These results highlight the potential use of Mg-doped CuO nanoparticles as antibiofilm agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.