In developmentally regulated D1:S3 splicing of Nav1.5, there are 31 nucleotide differences between the 5'-exon ('neonatal') and the 3'-exon ('adult') forms, resulting in 7 amino acid differences in D1:S3-S3/S4 linker. In particular, splicing replaces a conserved negative aspartate residue in the 'adult' with a positive lysine. Here, 'neonatal' and 'adult' Nav1.5 alpha-subunit splice variants were stably transfected into EBNA-293 cells and their electrophysiological properties investigated by whole-cell patch-clamp recording. Compared with the 'adult' isoform, the 'neonatal' channel exhibited (1) a depolarized threshold of activation and voltage at which the current peaked; (2) much slower kinetics of activation and inactivation; (3) 50% greater transient charge (Na(+)) influx; (4) a stronger voltage dependence of time to peak; and (5) a slower recovery from inactivation. Tetrodotoxin sensitivity and VGSCbeta1-4 mRNA expression levels did not change. The significance of the charge-reversing aspartate to lysine substitution was investigated by mutating the lysine in the 'neonatal' channel back to aspartate. In this 'neonatal K211D' mutant, the electrophysiological parameters studied strongly shifted back towards the 'adult', that is the lysine residue was primarily responsible for the electrophysiological effects of Nav1.5 D1:S3 splicing. Taken together, these data suggest that the charge reversal in 'neonatal' Nav1.5 would (1) modify the channel kinetics and (2) prolong the resultant current, allowing greater intracellular Na(+) influx. Developmental and pathophysiological consequences of such differences are discussed.
A range of experimental and clinical data suggests strongly (i) that metastatic progression in carcinomas is accompanied (maybe even preceded) by upregulation of functional voltage-gated sodium channels (VGSCs) and (ii) that VGSC activity enhances cancer cell invasiveness. First, this review outlines the available in vitro and in vivo evidence for the VGSC expression and its proposed pathophysiological role. Second, we question the mechanism(s) whereby VGSC activity can induce such a cancer-promoting effect. We advance the hypothesis that it is the hypoxia-sensitive persistent component of the VGSC current (INaP) that is central to the phenomenon. Indeed, blockers of INaP are very effective in suppressing cancer cell invasiveness in vitro. Based upon these data, UK and international patent applications have been filed which describe the use of INaP blockers, like ranolazine ("Ranexa") and riluzole ("Rilutex"), as anti-metastatic agents. Importantly, since these drugs are already in clinical use, against conditions like cardiac angina and amyotrophic lateral scelerosis, there are no issues of dosage, unacceptable side effects or long-term use. Thus, INaP blockers have the potential to turn cancer into a chronic condition.
Breast cancer (BCa) was induced in vivo in female rats with 7,12-dimethylbenz(a)anthracene (DMBA). Two main questions were addressed. Firstly, would the carcinogenesis be accompanied by oxidative stress as signalled by superoxide dismutase, glutathione peroxidase, malondialdehyde and total nitrate? Secondly, would treating the rats additionally with a blocker of voltage-gated sodium channel (VGSC) activity, shown previously to promote BCa progression, affect the oxidative responses? The DMBA-induced increases in the antioxidant systems were completely blocked by the VGSC inhibitor RS100642, which also significantly prolonged the lifespan. We conclude that VGSC inhibition in vivo can significantly protect against oxidative stress and improve survival from tumour burden.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.