Large-scale atom interferometers promise unrivaled strain sensitivity to mid-band gravitational waves, and will probe a new parameter space in the search for ultra-light scalar dark matter. These proposals require gradiometry with kilometer-scale baselines, a momentum separation above 104ℏk between interferometer arms, and optical transitions to long-lived clock states to reach the target sensitivities. Prohibitively high optical power and wavefront flatness requirements have thus far limited the maximum achievable momentum splitting. Here we propose a scheme for optical cavity enhanced atom interferometry, using circulating, spatially resolved pulses, and intracavity frequency modulation to meet these requirements. We present parameters for the realization of 20 kW circulating pulses in a 1 km interferometer enabling 104ℏk splitting on the 698 nm clock transition in 87Sr. This scheme addresses the presently insurmountable laser power requirements and is feasible in the context of a kilometer-scale atom interferometer facility.
We propose and demonstrate a scheme to enable Doppler compensation within optical cavities for atom interferometry at significantly increased mode diameters. This has the potential to overcome the primary limitations in cavity enhancement for atom interferometry, circumventing the cavity linewidth limit and enabling mode filtering, power enhancement, and a large beam diameter simultaneously. This approach combines a magnified linear cavity with an intracavity Pockels cell. The Pockels cell introduces a voltage tunable birefringence allowing the cavity mode frequencies to track the Raman lasers as they scan to compensate for gravitationally induced Doppler shifts, removing the dominant limitation of current cavity enhanced systems. A cavity is built to this geometry and shown to simultaneously realize the capability required for Doppler compensation, with a 5.04 mm 1/e 2 diameter beam waist and an enhancement factor of >5x at a finesse of 35. Furthermore, this has a tunable Gouy phase, allowing the suppression of higher order spatial modes and the avoidance of regions of instability. This approach can therefore enable enhanced contrast and longer atom interferometry times while also enabling
We propose and demonstrate a scheme for Doppler compensated optical cavity enhancement of atom interferometers at significantly increased mode diameters. This overcomes the primary limitations in cavity enhancement for atom interferometry, circumventing the cavity linewidth limit and enabling spatial mode filtering, power enhancement, and a large beam diameter simultaneously. This approach combines a magnified linear cavity with an intracavity Pockels cell. The Pockels cell induces a voltage-controlled birefringence allowing the cavity mode frequencies to follow the Raman lasers as they track gravitationally induced Doppler shifts, removing the dominant limitation of current cavity enhanced systems. A cavity is built to this geometry and shown to simultaneously realise Doppler compensation, a 5.8 ± 0.15 mm1/e2 diameter beam waist and an enhancement factor of >5× at a finesse of 35. Tuneable Gouy phase enables the suppression of higher order spatial modes and the avoidance of regions of instability. Atom interferometers will see increased contrast at extended interferometry times along with power enhancement and the reduction of optical aberrations. This is relevant to power constrained applications in quantum technology, alongside the absolute performance requirements of fundamental science.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.