Due it increasing use in electronics, polymers, mainly acrylonitrile-butadiene-styrene (ABS) and its blend with polycarbonate (PC), are making considerable part of electronic waste. It has been proven that halogenated flame retardants used in polymers for electronics are toxic to environment and human health. Aim of the research is to evaluate the effects of nanostructured montmorillonite clay (D43B) addition on the mechanical and thermal characteristics of PC, ABS and its binary blends. The effect of substitution of virgin polymers in the blend with recycled ones has been also investigated. It has been determined that as far as the recycled polymer content in the composites does not exceed 10wt.%, tensile and thermal properties of the systems are not considerably affected. Addition of D43B up to 1,0-1,5wt.% contributes to the increment of mechanical stiffness, strength and thermal stability of the composites.
Thermal effects in polycarbonate (PC) induced by lanthanide oxide nanoparticles (NPs) dispersed by blending were studied using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). DSC data proved the occurrence of solvent-induced crystallization of polymer doped with cerium oxide (ceria). TGA was performed to predict PC flammability properties in composites with 5-15 wt % ceria NPs at various heating rates. Decomposition was represented by first-order reactions and the Arrhenius equation. A model was formulated for thin samples subject to uniform heat irradiation, which is based on PC softening and decomposition into several products. This is an attempt to predict composite film burning behavior assuming constant heat transmission to samples.
Acrylonitrile butadiene styrene (ABS) terpolymer is one of the major plastics in IT equipment waste stream. In the current research secondary ABS (s-ABS) is blended with polycarbonate (PC) by forming one of the most popular thermoplastics engineering system. The effect of organically modified montmorillonite clay (OMMT) on the tensile properties and thermal stability of PC+10wt.%s-ABS blend is investigated. Increase in stiffness, strength and thermal stability is observed along with rising OMMT content. Highest increments of the aforementioned properties are observed within the OMMT range of 1-1,5 wt.%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.