Stepped spillways have been increasingly used to handle flood releases from large dams associated with hydropower plants, and it is important to evaluate the fluctuating pressure field on the steps. Hydraulic model investigations were conducted on three 53° (1V:0.75H) sloping and relatively large-stepped chutes to characterize the mean, fluctuating, and extreme pressures acting on the most critical regions of the step faces, near their outer edges. The pressure development along the chutes is presented, generally indicating an increase of the modulus of pressure coefficients up to the vicinity of the point of inception of air entrainment, and a decrease further downstream. The extreme pressure coefficients along the spillway are fitted by an empirical formula, and the critical conditions potentially leading to cavitation on prototypes are calculated. The correlation between the cavitation index and the friction factor is also applied for predicting the onset of cavitation on prototypes, and the results are compared with the pressure data-based method. Generally, the results obtained from those methods yield typical values for the cavitation index in the vicinity of the point of inception, varying approximately from 0.8 to 0.6, respectively. In light of these results, maximum unit discharges of about 15–20 m2/s are considered advisable on 53° sloping large-stepped spillways without artificial aeration, for step heights ranging from 0.6 to 1.2 m. For much higher unit discharges, a considerable reach of the spillway may potentially be prone to the risk of cavitation damage.
Simplified methods are useful alternatives for prior analysis of the effects of dam rupture and can guide the decision-making process for carrying out more complete studies. In this context, a new simplified approach is presented, which enables the analysis of aspects from dam rupture of earthen dams that failed due to overtopping, considering dam height and reservoir volume as input data. Hypothetical cases were analyzed applying dam-break hydrodynamic simulations, which results allowed the development of equations capable of estimating peak flow attenuation and peak discharge arrival time along the downstream valley. The proposed approach was applied in a hypothetical case study (15 m high dam and 17 hm3 reservoir volume), obtaining results close to those achieved through other methods, especially in case of estimating the maximum discharges throughout the downstream valley, where the average differences between the results of the methods were of the order of 15%.
During floods, stepped spillways have the purpose of dissipating energy over the flow passage through the chute, minimizing stilling basins dimensions. However, stepped spillways have their utilization frequently limited to unit discharges of approximately 15 m³/s/m, due to the risk of cavitation damage. In order to increase the specific yields endured by these structures avoiding cavitation damages, some aeration elements are being studied. These elements allow a jet formation and the air can be introduced through the lower portion, in addition to the surface aeration. The present paper has the purpose of analyze the medium pressures behavior and the jet formation in a flow over stepped spillway through measures conducted on a scale reduced physical model. It was possible to notice that the jet reaches the 7 th step for the higher flows and the 9 th step for the lower. Furthermore, it was observed that, upstream of the jet impact location, the mean pressures were close to zero. These pressures were lower than the same measured at a stepped chute with natural aeration (without aerator elements) for the horizontal faces of the steps and higher for the vertical faces of the steps. Near the jet's impact location, for both faces of the steps, a peak of positive pressures was observed, exceeding the same values on a chute with natural aeration. Downstream of this location, the pressures tend to the values acquired with natural aeration.
The possibility of damage due to the phenomenon of cavitation leads the design of stepped spillways considering maximum specific discharges of 15 to 30 m2/s, a limit considerably lower than that practiced on smooth chutes. Aerators promote the insertion of air in the flow, allowing for the increase of specific flow rates. This work analyzes the pressures on the vertical faces of the steps and the air entrainment coefficient in the flow, through an experimental study in a physical model with a stepped chute angle of 53.13o, considering the installation of aerators in different places of the channel. Comparing the tested conditions with the natural aeration, it is concluded that the installation of the aerator does not change the magnitude of the minimum extreme hydrodynamic pressures, but anticipates the beginning of the flow aeration. A new equation is proposed to estimate the air entrainment coefficient, as well as a methodology for forecasting extreme pressures on the vertical faces of the steps, both valid in the range 3.0 ≤ Fr ≤ 6.0.
The operation of stepped spillways is limited by a range of discharges due to the risk of occurrence of the cavitation phenomenon and erosion on its steps. Since there is a demand for spillways with the possibility of overflow of greater discharges, the designs seek to increase the air concentration of the flow, which can occur through the installation of piers in the spillway in order to protect the structure from the above mentioned damage. The aim of this work is to analyze flow characteristics and extreme minimum and maximum pressures with non-exceedance probability of 0.1% and 99.9% acting next to the step edges of the spillway with aeration induced by piers through an experimental analysis in a physical model. Based on the results obtained, flow behavior was defined and equations for predicting the extreme pressures that occur along the stepped spillway with aeration induced by piers were proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.