The genetic bases and molecular mechanisms involved in the assembly and function of the flagellum components as well as in the regulation of the flagellar movement are not fully understood, especially in humans. There are several causes for sperm immotility, of which some can be avoided and corrected, whereas other are related to genetic defects and deserve full investigation to give a diagnosis to patients. This review was performed after an extensive literature search on the online databases PubMed, ScienceDirect, and Web of Science. Here, we review the involvement of regulatory pathways responsible for sperm motility, indicating possible causes for sperm immotility. These included the calcium pathway, the cAMP-dependent protein kinase pathway, the importance of kinases and phosphatases, the function of reactive oxygen species, and how the regulation of cell volume and osmolarity are also fundamental components. We then discuss main gene defects associated with specific morphological abnormalities. Finally, we slightly discuss some preventive and treatments approaches to avoid development of conditions that are associated with unspecified sperm immotility. We believe that in the near future, with the development of more powerful techniques, the genetic causes of sperm immotility and the regulatory mechanisms of sperm motility will be better understand, thus enabling to perform a full diagnosis and uncover new therapies.
Clinical genetics has an important role in the healthcare system to provide a definitive diagnosis for many rare syndromes. It also can have an influence over genetics prevention, disease prognosis and assisting the selection of the best options of care/treatment for patients. Next-generation sequencing (NGS) has transformed clinical genetics making possible to analyze hundreds of genes at an unprecedented speed and at a lower price when comparing to conventional Sanger sequencing. Despite the growing literature concerning NGS in a clinical setting, this review aims to fill the gap that exists among (bio)informaticians, molecular geneticists and clinicians, by presenting a general overview of the NGS technology and workflow. First, we will review the current NGS platforms, focusing on the two main platforms Illumina and Ion Torrent, and discussing the major strong points and weaknesses intrinsic to each platform. Next, the NGS analytical bioinformatic pipelines are dissected, giving some emphasis to the algorithms commonly used to generate process data and to analyze sequence variants. Finally, the main challenges around NGS bioinformatics are placed in perspective for future developments. Even with the huge achievements made in NGS technology and bioinformatics, further improvements in bioinformatic algorithms are still required to deal with complex and genetically heterogeneous disorders.
Our work suggests that WES is an effective strategy, especially as compared with conventional sequencing, to study highly heterogenic genetic diseases, such as sperm immotility. For future work we expect to expand the analysis of WES to the other four patients and complement findings with expression analysis or functional studies to determine the impact of the novel variants.
Background Numerous studies from different labs around the world report human cardiac progenitor cells (hCPCs) as having a role in myocardial repair upon ischemia/reperfusion (I/R) injury, mainly through auto/paracrine signaling. Even though these cell populations are already being investigated in cell transplantation-based clinical trials, the mechanisms underlying their response are still poorly understood. Methods To further investigate hCPC regenerative process, we established the first in vitro human heterotypic model of myocardial I/R injury using hCPCs and human-induced pluripotent cell-derived cardiomyocytes (hiPSC-CMs). The co-culture model was established using transwell inserts and evaluated in both ischemia and reperfusion phases regarding secretion of key cytokines, hiPSC-CM viability, and hCPC proliferation. hCPC proteome in response to I/R was further characterized using advanced liquid chromatography mass spectrometry tools. Results This model recapitulates hallmarks of I/R, namely hiPSC-CM death upon insult, protective effect of hCPCs on hiPSC-CM viability (37.6% higher vs hiPSC-CM mono-culture), and hCPC proliferation (approximately threefold increase vs hCPCs mono-culture), emphasizing the importance of paracrine communication between these two populations. In particular, in co-culture supernatant upon injury, we report higher angiogenic functionality as well as a significant increase in the CXCL6 secretion rate, suggesting an important role of this chemokine in myocardial regeneration. hCPC whole proteome analysis allowed us to propose new pathways in the hCPC-mediated regenerative process, including cell cycle regulation, proliferation through EGF signaling, and reactive oxygen species detoxification. Conclusion This work contributes with new insights into hCPC biology in response to I/R, and the model established constitutes an important tool to study the molecular mechanisms involved in the myocardial regenerative process. Electronic supplementary material The online version of this article (10.1186/s13287-019-1174-4) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.