Summary Background Pneumonia is the leading cause of death among children younger than 5 years. In this study, we estimated causes of pneumonia in young African and Asian children, using novel analytical methods applied to clinical and microbiological findings. Methods We did a multi-site, international case-control study in nine study sites in seven countries: Bangladesh, The Gambia, Kenya, Mali, South Africa, Thailand, and Zambia. All sites enrolled in the study for 24 months. Cases were children aged 1–59 months admitted to hospital with severe pneumonia. Controls were age-group-matched children randomly selected from communities surrounding study sites. Nasopharyngeal and oropharyngeal (NP-OP), urine, blood, induced sputum, lung aspirate, pleural fluid, and gastric aspirates were tested with cultures, multiplex PCR, or both. Primary analyses were restricted to cases without HIV infection and with abnormal chest x-rays and to controls without HIV infection. We applied a Bayesian, partial latent class analysis to estimate probabilities of aetiological agents at the individual and population level, incorporating case and control data. Findings Between Aug 15, 2011, and Jan 30, 2014, we enrolled 4232 cases and 5119 community controls. The primary analysis group was comprised of 1769 (41·8% of 4232) cases without HIV infection and with positive chest x-rays and 5102 (99·7% of 5119) community controls without HIV infection. Wheezing was present in 555 (31·7%) of 1752 cases (range by site 10·6–97·3%). 30-day case-fatality ratio was 6·4% (114 of 1769 cases). Blood cultures were positive in 56 (3·2%) of 1749 cases, and Streptococcus pneumoniae was the most common bacteria isolated (19 [33·9%] of 56). Almost all cases (98·9%) and controls (98·0%) had at least one pathogen detected by PCR in the NP-OP specimen. The detection of respiratory syncytial virus (RSV), parainfluenza virus, human metapneumovirus, influenza virus, S pneumoniae, Haemophilus influenzae type b (Hib), H influenzae non-type b, and Pneumocystis jirovecii in NP-OP specimens was associated with case status. The aetiology analysis estimated that viruses accounted for 61·4% (95% credible interval [CrI] 57·3–65·6) of causes, whereas bacteria accounted for 27·3% (23·3–31·6) and Mycobacterium tuberculosis for 5·9% (3·9–8·3). Viruses were less common (54·5%, 95% CrI 47·4–61·5 vs 68·0%, 62·7–72·7) and bacteria more common (33·7%, 27·2–40·8 vs 22·8%, 18·3–27·6) in very severe pneumonia cases than in severe cases. RSV had the greatest aetiological fraction (31·1%, 95% CrI 28·4–34·2) of all pathogens. Human rhinovirus, human metapneumovirus A or B, human parainfluenza virus, S pneumoniae, M tuberculosis , and H influenzae each accounted f...
SummaryThis report updates the 2017–18 recommendations of the Advisory Committee on Immunization Practices (ACIP) regarding the use of seasonal influenza vaccines in the United States (MMWR Recomm Rep 2017;66[No. RR-2]). Routine annual influenza vaccination is recommended for all persons aged ≥6 months who do not have contraindications. A licensed, recommended, and age-appropriate vaccine should be used. Inactivated influenza vaccines (IIVs), recombinant influenza vaccine (RIV), and live attenuated influenza vaccine (LAIV) are expected to be available for the 2018–19 season. Standard-dose, unadjuvanted, inactivated influenza vaccines will be available in quadrivalent (IIV4) and trivalent (IIV3) formulations. Recombinant influenza vaccine (RIV4) and live attenuated influenza vaccine (LAIV4) will be available in quadrivalent formulations. High-dose inactivated influenza vaccine (HD-IIV3) and adjuvanted inactivated influenza vaccine (aIIV3) will be available in trivalent formulations.Updates to the recommendations described in this report reflect discussions during public meetings of ACIP held on October 25, 2017; February 21, 2018; and June 20, 2018. New and updated information in this report includes the following four items. First, vaccine viruses included in the 2018–19 U.S. trivalent influenza vaccines will be an A/Michigan/45/2015 (H1N1)pdm09–like virus, an A/Singapore/INFIMH-16-0019/2016 (H3N2)-like virus, and a B/Colorado/06/2017–like virus (Victoria lineage). Quadrivalent influenza vaccines will contain these three viruses and an additional influenza B vaccine virus, a B/Phuket/3073/2013–like virus (Yamagata lineage). Second, recommendations for the use of LAIV4 (FluMist Quadrivalent) have been updated. Following two seasons (2016–17 and 2017–18) during which ACIP recommended that LAIV4 not be used, for the 2018–19 season, vaccination providers may choose to administer any licensed, age-appropriate influenza vaccine (IIV, RIV4, or LAIV4). LAIV4 is an option for those for whom it is appropriate. Third, persons with a history of egg allergy of any severity may receive any licensed, recommended, and age-appropriate influenza vaccine (IIV, RIV4, or LAIV4). Additional recommendations concerning vaccination of egg-allergic persons are discussed. Finally, information on recent licensures and labeling changes is discussed, including expansion of the age indication for Afluria Quadrivalent (IIV4) from ≥18 years to ≥5 years and expansion of the age indication for Fluarix Quadrivalent (IIV4), previously licensed for ≥3 years, to ≥6 months.This report focuses on the recommendations for use of vaccines for the prevention and control of influenza during the 2018–19 season in the United States. A Background Document containing further information and a brief summary of these recommendations are available at https://www.cdc.gov/vaccines/hcp/acip-recs/vacc-specific/flu.html.These recommendations apply to U.S.-licensed influenza vaccines used within Food and Drug Administration–licensed indications. Updates and other informa...
A live, cold-passaged (cp) candidate vaccine virus, designated respiratory syncytial virus (RSV) B1 cp-52͞ 2B5 (cp-52), replicated efficiently in Vero cells, but was found to be overattenuated for RSV-seronegative infants and children. Sequence analysis of reverse-transcription-PCRamplified fragments of this mutant revealed a large deletion spanning most of the coding sequences for the small hydrophobic (SH) and attachment (G) proteins. Northern blot analysis of cp-52 detected multiple unique read-through mRNAs containing SH and G sequences, consistent with a deletion mutation spanning the SH:G gene junction. Immunological studies confirmed that an intact G glycoprotein was not produced by the cp-52 virus. Nonetheless, cp-52 was infectious and replicated to high titer in tissue culture despite the absence of the viral surface SH and G glycoproteins. Thus, our characterization of this negative-strand RNA virus identified a novel replication-competent deletion mutant lacking two of its three surface glycoproteins. The requirement of SH and G for efficient replication in vivo suggests that selective deletion of one or both of these RSV genes may provide an alternative or additive strategy for developing an optimally attenuated vaccine candidate.Respiratory syncytial virus (RSV), the leading cause of severe viral respiratory illness in pediatric populations throughout the world (reviewed in ref. 1), accounts for approximately 90,000 hospitalizations in infants and children in the United States each year (2). The importance of RSV as a respiratory pathogen makes development of a safe and effective RSV vaccine a public health priority (3). Although a number of approaches to RSV vaccine development have been taken, live RSV vaccines may provide the best alternative for immunizing young infants, because a live vaccine would mimic natural infection, induce a balanced cellular and humoral immune response, and be unlikely to produce enhanced disease (4).RSV exists as two antigenically distinct subgroups, A and B, and both RSV A and RSV B infections are capable of inducing severe lower respiratory tract disease (5-7). For this reason, a bivalent live RSV vaccine containing attenuated RSV A and RSV B components would be most desirable. Recently, a live attenuated RSV A candidate vaccine has been identified that appears to be safe and immunogenic in infants and children over 6 months of age (8). In addition, a cold-passaged (cp) RSV B candidate vaccine, designated RSV B1 cp-52͞2B5 (cp-52), was derived by passage of the RSV B1 wild-type (wt) virus 52 times at low temperature (21-32°C) (9). Cp-52 was shown to be restricted in replication in vivo but still able to induce RSV serum-neutralizing antibody responses in cotton rats, African green monkeys, and chimpanzees (9). Also, it was found to be phenotypically stable after prolonged replication in cotton rats (9). Here, we describe the phase I evaluation of the cp-52 candidate vaccine in adults, children, and infants. Although this virus mutant grew to high titer (Ͼ10 7....
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.