Semiconductors are central to the modern electronics and optics industries. Conventional semiconductive materials bear inherent limitations, especially in emerging fields such as interfacing with biological systems and bottom-up fabrication. A promising candidate for bioinspired and durable nanoscale semiconductors is the family of self-assembled nanostructures comprising short peptides. The highly ordered and directional intermolecular π-π interactions and hydrogen-bonding network allow the formation of quantum confined structures within the peptide self-assemblies, thus decreasing the band gaps of the superstructures into semiconductor regions. As a result of the diverse architectures and ease of modification of peptide self-assemblies, their semiconductivity can be readily tuned, doped, and functionalized. Therefore, this family of electroactive supramolecular materials may bridge the gap between the inorganic semiconductor world and biological systems.
Hybrid systems consisting of nucleic-acid-functionalized silver nanoclusters (AgNCs) and graphene oxide (GO) are used for the development of fluorescent DNA sensors and aptasensors, and for the multiplexed analysis of a series of genes of infectious pathogens. Two types of nucleic-acid-stabilized AgNCs are used: one type includes the red-emitting AgNCs (616 nm) and the second type is near-infrared-emitting AgNCs (775 nm). Whereas the nucleic-acid-stabilized AgNCs do not bind to GO, the conjugation of single-stranded nucleic acid to the DNA-stabilized AgNCs leads to the adsorption of the hybrid nanostructures to GO and to the fluorescence quenching of the AgNCs. By the conjugation of oligonucleotide sequences acting as probes for target genes, or as aptamer sequences, to the nucleic-acid-protected AgNCs, the desorption of the probe/nucleic-acid-stabilized AgNCs from GO through the formation of duplex DNA structures or aptamer-substrate complexes leads to the generation of fluorescence as a readout signal for the sensing events. The hybrid nanostructures are implemented for the analysis of hepatitis B virus gene (HBV), the immunodeficiency virus gene (HIV), and the syphilis (Treponema pallidum) gene. Multiplexed analysis of the genes is demonstrated. The nucleic-acid-AgNCs-modified GO is also applied to detect ATP or thrombin through the release of the respective AgNCs-labeled aptamer-substrate complexes from GO.
Graphene oxide (GO) is implemented as a functional matrix for developing fluorescent sensors for the amplified multiplexed detection of DNA, aptamer-substrate complexes, and for the integration of predesigned DNA constructs that activate logic gate operations. Fluorophore-labeled DNA strands acting as probes for two different DNA targets are adsorbed onto GO, leading to the quenching of the luminescence of the fluorophores. Desorption of the probes from the GO, through hybridization with the target DNAs, leads to the fluorescence of the respective label. By coupling exonuclease III, Exo III, to the system, the recycling of the target DNAs is demonstrated, and this leads to the amplified detection of the DNA targets (detection limit 5 × 10(-12) M). Similarly, adsorption of fluorophore-functionalized aptamers against thrombin or ATP onto the GO leads to the desorption of the aptamer-substrate complexes from GO and to the triggering of the luminescence corresponding to the respective fluorophore, thus, allowing the multiplexed analysis of the aptamer-substrate complexes. By designing functional fluorophore-labeled DNA constructs and their interaction with GO, in the presence (or absence) of nucleic acids, or two different substrates for aptamers, as inputs, the activation of the "OR" and "AND" logic gates is demonstrated.
Quantum confined materials have been extensively studied for photoluminescent applications. Due to intrinsic limitations of low biocompatibility and challenging modulation, the utilization of conventional inorganic quantum confined photoluminescent materials in bio-imaging and bio-machine interface faces critical restrictions. Here, we present aromatic cyclo-dipeptides that dimerize into quantum dots, which serve as building blocks to further self-assemble into quantum confined supramolecular structures with diverse morphologies and photoluminescence properties. Especially, the emission can be tuned from the visible region to the near-infrared region (420 nm to 820 nm) by modulating the self-assembly process. Moreover, no obvious cytotoxic effect is observed for these nanostructures, and their utilization for in vivo imaging and as phosphors for light-emitting diodes is demonstrated. The data reveal that the morphologies and optical properties of the aromatic cyclo-dipeptide self-assemblies can be tuned, making them potential candidates for supramolecular quantum confined materials providing biocompatible alternatives for broad biomedical and opto-electric applications.
Systematic autofluorescence characterization of all coded amino acids was performed Lysine, a non-aromatic amino acid, exhibited the highest fluorescent signal Revirsible transition between cysteine crystals determines on-off autofluorescence Ultrafast lifetime decay shown experimentally, confirming governing role in emission
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.