Developers of application codes for massively parallel computer systems face daunting performance tuning and optimization problems that must be solved if massively parallel systems are to fulfill their promise. Recording and analyzing the dynamics of application program, system software, and hardware interac.tions is the key to understanding and the prerequisite to performance tuning, but this instrumentation and analysis must not unduly perturb program execution. Pablo is a performance analysis environment designed t o provide unobtrusive performance data capture, analysis, and presentation across a wide variety of scalable parallel systems. Current efforts include dynamic statistical clustering t o reduce the volume of data that must be captured and complete performance data immersion via head-mounted displays.
We present an auto-tuning system for optimizing I/O performance of HDF5 applications and demonstrate its value across platforms, applications, and at scale. The system uses a genetic algorithm to search a large space of tunable parameters and to identify effective settings at all layers of the parallel I/O stack. The parameter settings are applied transparently by the auto-tuning system via dynamically intercepted HDF5 calls.To validate our auto-tuning system, we applied it to three I/O benchmarks (VPIC, VORPAL, and GCRM) that replicate the I/O activity of their respective applications. We tested the system with different weak-scaling configurations (128, 2048, and 4096 CPU cores) that generate 30 GB to 1 TB of data, and executed these configurations on diverse HPC platforms (Cray XE6, IBM BG/P, and Dell Cluster). In all cases, the auto-tuning framework identified tunable parameters that substantially improved write performance over default system settings. We consistently demonstrate I/O write speedups between 2x and 100x for test configurations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.