Animal experiments have shown that non-human primates, cats, ferrets, hamsters, rabbits and bats can be infected by SARS-CoV-2. In addition, SARS-CoV-2 RNA has been detected in felids, mink and dogs in the field. Here, we describe an in-depth investigation using whole genome sequencing of outbreaks on 16 mink farms and the humans living or working on these farms. We conclude that the virus was initially introduced from humans and has since evolved, most likely reflecting widespread circulation among mink in the beginning of the infection period several weeks prior to detection. Despite enhanced biosecurity, early warning surveillance and immediate culling of infected farms, transmission occurred between mink farms in three big transmission clusters with unknown modes of transmission. Sixty-eight percent (68%) of the tested mink farm residents, employees and/or contacts had evidence of SARS-CoV-2 infection. Where whole genomes were available, these persons were infected with strains with an animal sequence signature, providing evidence of animal to human transmission of SARS-CoV-2 within mink farms.
Respiratory disease and increased mortality occurred in minks on two farms in the Netherlands, with interstitial pneumonia and SARS-CoV-2 RNA in organ and swab samples. On both farms, at least one worker had coronavirus disease-associated symptoms before the outbreak. Variations in mink-derived viral genomes showed between-mink transmission and no infection link between the farms. Inhalable dust contained viral RNA, indicating possible exposure of workers. One worker is assumed to have attracted the virus from mink.
SARS-CoV-2, the causative agent of COVID-19, caused respiratory disease outbreaks with increased mortality in 4 mink farms in the Netherlands. The most striking postmortem finding was an acute interstitial pneumonia, which was found in nearly all examined mink that died at the peak of the outbreaks. Acute alveolar damage was a consistent histopathological finding in mink that died with pneumonia. SARS-CoV-2 infections were confirmed by detection of viral RNA in throat swabs and by immunohistochemical detection of viral antigen in nasal conchae, trachea, and lung. Clinically, the outbreaks lasted for about 4 weeks but some animals were still polymerase chain reaction–positive for SARS-CoV-2 in throat swabs after clinical signs had disappeared. This is the first report of the clinical and pathological characteristics of SARS-CoV-2 outbreaks in mink farms.
Regulatory T cells (Treg) are regarded essential components for maintenance of immune homeostasis. Especially CD4+CD25high T cells are considered to be important regulators of immune reactivity. In humans and rodents these natural Treg are characterized by their anergic nature, defined as a non-proliferative state, suppressive function and expression of Foxp3. In this study the potential functional role of flowcytometry-sorted bovine white blood cell populations, including CD4+CD25high T cells and γδ T cell subpopulations, as distinct ex vivo regulatory cells was assessed in co-culture suppression assays. Our findings revealed that despite the existence of a distinct bovine CD4+CD25high T cell population, which showed Foxp3 transcription/expression, natural regulatory activity did not reside in this cell population. In bovine co-culture suppression assays these cells were neither anergic nor suppressive. Subsequently, the following cell populations were tested functionally for regulatory activity: CD4+CD25low T cells, WC1+, WC1.1+ and WC1.2+ γδ T cells, NK cells, CD8+ T cells and CD14+ monocytes. Only the WC1.1+ and WC1.2+ γδ T cells and CD14+ monocytes proved to act as regulatory cells in cattle, which was supported by the fact that these regulatory cells showed IL-10 transcription/expression. In conclusion, our data provide first evidence that cattle CD4+CD25highFoxp3+ and CD4+CD25low T cells do not function as Treg ex vivo. The bovine Treg function appears to reside in the γδ T cell population, more precisely in the WC1.1+ and the WC1.2+ subpopulation, major populations present in blood of cattle in contrast to non-ruminant species.
The zoonotic origin of the SARS-CoV-2 pandemic is still unknown. Animal experiments have shown that non-human primates, cats, ferrets, hamsters, rabbits and bats can be infected by SARS-CoV-2. In addition, SARS-CoV-2 RNA has been detected in felids, mink and dogs in the field. Here, we describe an in-depth investigation of outbreaks on 16 mink farms and humans living or working on these farms, using whole genome sequencing. We conclude that the virus was initially introduced from humans and has evolved, most likely reflecting widespread circulation among mink in the beginning of the infection period several weeks prior to detection. At the moment, despite enhanced biosecurity, early warning surveillance and immediate culling of infected farms, there is ongoing transmission between mink farms with three big transmission clusters with unknown modes of transmission. We also describe the first animal to human transmissions of SARS-CoV-2 in mink farms.One sentence summarySARS-CoV-2 transmission on mink farms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.