Macrophage/microglial cells in the mouse retina during embryonic and postnatal development were studied by immunocytochemistry with Iba1, F4/80, anti-CD45, and anti-CD68 antibodies and by tomato lectin histochemistry. These cells were already present in the retina of embryos aged 11.5 days (E11.5) in association with cell death. At E12.5 some macrophage/microglial cells also appeared in peripheral regions of the retina with no apparent relationship with cell death. Immediately before birth microglial cells were present in the neuroblastic, inner plexiform (IPL), and ganglion cell (GCL) layers, and their distribution suggested that they entered the retina from the ciliary margin and the vitreous. The density of retinal microglial cells strongly decreased at birth, increased during the first postnatal week as a consequence of the entry of microglial precursors into the retina from the vitreous, and subsequently decreased owing to the cessation of microglial entry and the increase in retina size. The mature topographical distribution pattern of microglia emerged during postnatal development of the retina, apparently by radial migration of microglial cells from the vitreal surface in a vitreal-to-scleral direction. Whereas microglial cells were only seen in the GCL and IPL at birth, they progressively appeared in more scleral layers at increasing postnatal ages. Thus, microglial cells were present within all layers of the retina except the outer nuclear layer at the beginning of the second postnatal week. Once microglial cells reached their definitive location, they progressively ramified.
The microglial response elicited by degeneration of retinal photoreceptor cells was characterized in BALB/c mice exposed to bright light for 7 hours and then kept in complete darkness for survival times ranging from 0 hours to 10 days. Photodegeneration resulted in extensive cell death in the retina, mainly in the outer nuclear layer (ONL), where the photoreceptor nuclei are located. Specific immunolabeling of microglial cells with anti-CD11b, anti-CD45, anti-F4/80, anti-SRA, and anti-CD68 antibodies revealed that microglial cells were activated in light-exposed retinas. They migrated to the ONL, changed their morphology, becoming rounded cells with short and thick processes, and, finally, showed immunophenotypic changes. Specifically, retinal microglia began to strongly express antigens recognized by anti-CD11b, anti-CD45, and anti-F4/80, coincident with cell degeneration. In contrast, upregulation of the antigen recognized by anti-SRA was not detected by immunocytochemistry until 6 hours after light exposure. Differences were also observed at 10 days after light exposure: CD11b, CD45, and F4/80 continued to be strongly expressed in retinal microglia, whereas the expression of CD68 and SRA had decreased to near-normal values. Therefore, microglia did not return to their original state after photodegeneration and continued to show a degree of activation. The accumulation of activated microglial cells in affected regions simultaneously with photoreceptor degeneration suggests that they play some role in photodegeneration.
Long distance migration of microglial precursors within the central nervous system is essential for microglial colonization of the nervous parenchyma. We studied morphological features of ameboid microglial cells migrating tangentially in the developing quail retina to shed light on the mechanism of migration and migratory behavior of microglial precursors. Many microglial precursors remained attached on retinal sheets containing the inner limiting membrane covered by a carpet of Mu ¨ller cell endfeet. This demonstrates that most ameboid microglial cells migrate tangentially on Mu ¨ller cell endfeet. Many of these cells showed a central-to-peripheral polarized morphology, with extensive lamellipodia spreading through grooves flanked by Mu ¨ller cell radial processes, to which they were frequently anchored. Low protuberances from the vitreal face of microglial precursors were firmly attached to the subjacent basal lamina, which was accessible through gaps in the carpet of Mu ¨ller cell endfeet. These results suggest a mechanism of migration involving polarized extension of lamellipodia at the leading edge of the cell, strong cell-to-substrate attachment, translocation of the cell body forward, and retraction of the rear of the cell. Other ameboid cells were multipolar, with lamellipodial projections radiating in all directions from the cell body, suggesting that microglial precursors explore the surrounding environment to orient their movement. Central-to-peripheral migration of microglial precursors in the retina does not follow a straight path; instead, these cells perform forward, backward, and sideways movements, as suggested by the occurrence of (a) V-shaped bipolar ameboid cells with their vertex pointing toward either the center or the periphery of the retina, and (b) threadlike processes projecting from either the periphery-facing edge or the center-facing edge of ameboid microglial cells.
We compared chronotopographical patterns of distribution of naturally occurring neuronal death in the ganglion cell layer (GCL) and the inner nuclear layer (INL) with patterns of tangential and radial migration of microglial precursors during quail retinal development. Apoptotic cells were identified by the terminal deoxynucleotidyl transferase‐mediated deoxyuridine triphosphate nick end labeling technique, and microglial precursors were identified by immunocytochemistry with an antibody recognizing quail microglial cells (QH1 antibody). Apoptotic cells were first detectable in the GCL at the seventh day of incubation (E7), were most abundant at E10, and were absent after E13. In the INL, apoptotic cells first appeared at E7, were most abundant at E12, and disappeared entirely after the third posthatching day (P3). In both retinal layers, cell death first appeared in a small central area of the retina and subsequently spread along three gradients: central‐to‐peripheral, temporal‐to‐nasal, and dorsal‐to‐ventral. The chronology of tangential (between E7 and E16) and radial migration (between E8 and P3) of microglial precursors was highly coincident with that of cell death in the GCL and INL. Comparison of the chronotopographical pattern of distribution of apoptotic nuclei in the GCL with the patterns of tangential and radial migration of microglial precursors neither supported nor refuted the hypothesis that ganglion cell death is the stimulus that triggers the entry and migration of microglial precursors in the developing retina. However, microglial cells in most of the retina traversed the INL only after cell death had ceased in this layer, suggesting that cell death in the INL does not attract microglial precursors migrating radially. Dead cell debris in this layer was phagocytosed by Müller cells, whereas migrating microglial cells were seen phagocytosing apoptotic bodies in the nerve fiber layer and GCL but not in the INL. J. Comp. Neurol. 412:255–275, 1999. © 1999 Wiley‐Liss, Inc.
Inducible nitric oxide synthase (iNOS), which produce large amounts of nitric oxide (NO), is induced in macrophages and microglia in response to inflammatory mediators such as LPS and cytokines. Although iNOS is mainly expressed by microglia that become activated in different pathological and experimental situations, it was recently reported that undifferentiated amoeboid microglia can also express iNOS during normal development. The aim of this study was to investigate the pattern of iNOS expression in microglial cells during normal development and after their activation with LPS by using the quail retina as model. iNOS expression was analyzed by iNOS immunolabeling, western-blot, and RT-PCR. NO production was determined by using DAR-4M AM, a reliable fluorescent indicator of subcellular NO production by iNOS. Embryonic, postnatal, and adult in situ quail retinas were used to analyze the pattern of iNOS expression in microglial cells during normal development. iNOS expression and NO production in LPS-treated microglial cells were investigated by an in vitro approach based on organotypic cultures of E8 retinas, in which microglial cell behavior is similar to that of the in situ retina, as previously demonstrated in our laboratory. We show here that amoeboid microglia in the quail retina express iNOS during normal development. This expression is stronger in microglial cells migrating tangentially in the vitreal part of the retina and is downregulated, albeit maintained, when microglia differentiate and become ramified. LPS treatment of retina explants also induces changes in the morphology of amoeboid microglia compatible with their activation, increasing their lysosomal compartment and upregulating iNOS expression with a concomitant production of NO. Taken together, our findings demonstrate that immature microglial cells express iNOS during normal development, suggesting a certain degree of activation. Furthermore, LPS treatment induces overactivation of amoeboid microglia, resulting in a significant iNOS upregulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.