Weinmannia trichosperma Cav. (Cunoniaceae) (local name, tineo; Mapuche names, madeń, mëdehue) is an endemic species of Chile and Argentina used in Mapuche traditional medicine in the treatment of chronic diarrhea, inflammation, and wound healing. This study focused on the isolation, analysis, and characterization of the biological activity of compounds and bark extracts from this plant for the first time. The infusion and tincture of the bark were characterized regarding antioxidant and important enzyme inhibitory activities, phenolics, and flavonoids content and UHPLC-ESI-OT-MS metabolite profiling. Twenty-five metabolites were detected in the medicinal infusion of W. trichosperma, three flavonols were isolated: isoastilbin, neoisoastilbin, and neoastilbin ((2R,3S)-, (2S,3R)-, and (2S,3S)-dihydroquercetin 3-O-alpha-L-rhamnoside) by countercurrent chromatography, and the isomers were quantified in the bark using a validated analytical HPLC methodology. The antioxidant properties were measured by ABTS, DPPH, FRAP, ORAC, and TEAC methods. The infusion displayed a strong DPPH and ABTS scavenging activity (IC 50 = 20.58 and 3.070 µg ml −1 , respectively) while a moderated effect was observed in the FRAP, ORAC, and ABTS assays. The infusion showed a content of phenolic and flavonoid compounds of 442.1 mg GAE g −1 and 15.54 mg QE g −1 , respectively. Furthermore, the infusion showed a good and promissory inhibitory activity (33.80%, 33.12%, and 82.86% for AChE, BuChE, and 5-hLOX, respectively) and isoastilbin (51.70%, 50.10%, and 34.29-80.71% for AChE, BuChE, and 5-hLOX, respectively). The biomolecules identified in this study support the traditional uses of this bark and the potential industrial interest from this Valdivian plant species.
Greigia sphacelata (Ruiz and Pav.) Regel (Bromeliaceae) is a Chilean endemic plant popularly known as “quiscal” and produces an edible fruit consumed by the local Mapuche communities named as “chupón”. In this study, several metabolites including phenolic acids, organic acids, sugar derivatives, catechins, proanthocyanidins, fatty acids, iridoids, coumarins, benzophenone, flavonoids, and terpenes were identified in G. sphacelata fruits using ultrahigh performance liquid chromatography-photodiode array detection coupled with a Orbitrap mass spectrometry (UHPLC-PDA-Orbitrap-MS) analysis for the first time. The fruits showed moderate antioxidant capacities (i.e., 487.11 ± 26.22 μmol TE/g dry weight) in the stable radical DPPH assay, 169.08 ± 9.81 TE/g dry weight in the ferric reducing power assay, 190.32 ± 6.23 TE/g dry weight in the ABTS assay, and 76.46 ± 3.18% inhibition in the superoxide anion scavenging assay. The cholinesterase inhibitory potential was evaluated against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). From the findings, promising results were observed for pulp and seeds. Our findings suggest that G. sphacelata fruits are a rich source of diverse secondary metabolites with antioxidant capacities. In addition, the inhibitory effects against AChE and BChE suggest that natural products or food supplements derived from G. sphacelata fruits are of interest for their neuroprotective potential.
Forty-three metabolites including several methoxylated flavonoids, tremetones, and ent-clerodane diterpenes were accurately identified for the first time in the ethanolic extract of P. quadrangularis by means of hyphenated UHPLC-quadrupole Orbitrap mass spectrometry, and seven isolated compounds were tested regarding gastroprotective activity using the HCl/EtOH-induced lesion model in mice. A new tremetone (compound 6) is reported based on spectroscopic evidence. The isolated clerodanes and tremetones showed gastroprotective activity in a mouse model, evidenced by compound 7 (p-coumaroyloxytremetone), which showed the highest gastroprotective activity (76%), which was higher than the control drug lansoprazole (72%). Our findings revealed that several constituents of this plant have gastroprotective activity, and particularly, p-coumaroyloxytremetone could be considered as a lead molecule to explore new gastroprotective agents. This plant is a rich source of biologically active tremetones and terpenoids which can support the ethnobotanical use of the plant.
Ovidia pillopillo (Lloime) is an endemic species of the Valdivian Forest of Chile. Little is known on the chemistry and biological activity of this plant. In this study, the phenolic profile, antioxidant capacities and enzyme inhibition capacities (against tyrosinase and cholinesterase) of the plant were investigated for the first time. The phenolic profile of the plant was obtained by UHPLC-MS fingerprinting with high resolution, which showed the presence of several flavonoids and coumarins. The antioxidant potential was measured by FRAP and ORAC (45.56 ± 1.32; 25.33 ± 1.2 μmol Trolox equivalents/g dry plant, respectively) plus ABTS and DPPH methods (IC50 = 9.95 ± 0.05 and 6.65 ± 0.5 μg/mL, respectively). Moreover, the flavonoid and phenolic contents were determined (57.33 ± 0.82 and 38.42 ± 1.32, μg of Trolox and quercetin equivalents/100 g dry weight, respectively). The ethanolic extract showed cholinesterase (IC50 = 1.94 ± 0.07 and 2.73 ± 0.05 μg/mL, for AChE and BuChE, respectively) and tyrosinase (4.92 ± 0.05 μg/mL) enzyme inhibition activities. Based on these in vitro studies, in silico simulations were performed, which determined that the major compounds as ligands likely docked in the receptors of the enzymes. These results suggest that Ovidia pillopillo produce interesting special coumarins and flavonoids, which are potential candidates for the exploration and preparation of new medicines.
Gypothamnium pinifolium Phil. (Asteraceae) is a small shrub that grows in the Paposo Valley of the II Antofagasta Region of Chile. This initial study is of the high-resolution phenolic fingerprinting, antioxidant activity, the relaxation effects in rat aorta, the inhibitory enzyme potential, plus the antiproliferative activity of the ethyl acetate and n-hexane extract from G. pinifolium and its two major isolated secondary metabolites (one coumarin: 2-nor-1,2-secolycoserone, and one diterpene: ent-labda-8,13-E-diene-15-ol). The study involves using ultra-high-performance liquid chromatography todiode array detection coupled with Q-Orbitrap mass spectrometry analysis (UHPLC-PDA-Orbi-trap-MS), in which various compounds were identified, including specific coumarins. The n-hexane extract showed total phenolic and flavonoid contents of 517.4 ± 12.5 mg GAE/100 g extract and 72.3 ± 3.7 mg QE/100 g extract, respectively. In addition, the antioxidant activity of the n-hexane extract was assessed using in-vitro assays such as bleaching of DPPH and ABTS (IC50: 14.3 ± 0.52 and 2.51 ± 0.43 µg extract/mL, respectively), FRAP (347.12 ± 1.15 μmol Trolox equivalent/g extract), and ORAC (287.3 ± 1.54 μmol Trolox equivalents/g extract). Furthermore, the inhibition against cholinesterases (acetylcholinesterase (AChE) 4.58 ± 0.04 µg/mL, butyrylcholinesterase (BChE) IC50: 23.44 ± 0.03 µg/mL) and tyrosinase (IC50: 9.25 ± 0.15 µg/mL) enzymes of the n-hexane extract, and main compounds (IC50: 1.21 ± 0.03 µg/mL, 11.23 ± 0.02 µg/mL, 3.23 ± 0.12 µg/mL, and 103.43 ± 16.86 µg/mL, correspondingly for the most active coumarin 1) were measured. The antiproliferative potential of the extracts and the two principal compounds against several solid human cancer cells was investigated. All of them showed good activity against cancer cells. Label-free live-cell imaging studies on HeLa cells exposed to the isolated coumarin and the diterpene enabled the observation of cell death and several apoptotic hallmarks. Our results indicate that G. pinifolium Phil. is a valuable source of secondary metabolites with potential activity against noncommunicable diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.