power and solubility were determined by gravimetric techniques at 10% w /v of starch dispersion. Rheological properties were determined on a Bohlin Gemini HR Nano Rotonetic drive 2 rheometer while the structural properties were evaluated using Fourier transform infra-red (FTIR) spectroscopy and x-ray diffractometry (XRD). FTIR confirmed the presence of acetyl groups at 1700 cm -1 and carboxymethyl groups at 1579 cm -1 . The acetylated derivatives were resistant to syneresis. XRD displayed a crystallized region with three prominent peaks, centred on 2θ = 15.1, 17.2 and 23.2°, for the native starch, acetylated and oxidized starches while the carboxymethylated, xerogelized, and acetylated/xerogelized derivatives were typically amorphous. The derivatives (carboxymethylated and acetylated/xerogelyzed) were thermally stable and formed viscoelastic gel at room temperature. Conversely, dispersions of the native starch and the derivatives (acetylated, oxidized and acetylated/oxidized) exhibited thermal transitions due to gelatinization. The acetylated derivatives have potential in terms of shelf-life, stability, and diverse opportunities for multiple applications in pharmaceutical and food industries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.