Although the cerebral cortex has been implicated in the control of swallowing, the functional organization of the human cortical swallowing representation has not been fully documented. Therefore, the present study determined the cortical representation of swallowing in fourteen healthy right-handed female subjects using single-event-related functional magnetic resonance imaging (fMRI). Subjects were scanned during three swallowing activation tasks: a naïve saliva swallow, a voluntary saliva swallow, and a water bolus swallow. Swallow-related laryngeal movement was recorded simultaneously from the output of a bellows positioned over the thyroid cartilage. Statistical maps were generated by computing the difference between the magnitude of the voxel time course during 1) a single swallowing trial and 2) the corresponding control period. Automatic and volitional swallowing produced activation within several common cortical regions, the most prominent and consistent being located within the lateral precentral gyrus, lateral postcentral gyrus, and right insula. Activation foci within the superior temporal gyrus, middle and inferior frontal gyri, and frontal operculum also were identified for all swallowing tasks. In contrast, activation of the caudal anterior cingulate cortex was significantly more likely in association with the voluntary saliva swallow and water bolus swallow than the naïve swallow. These findings support the view that, in addition to known brain stem areas, human swallowing is represented within a number of spatially and functionally distinct cortical loci which may participate differentially in the regulation of swallowing. Activation of the insula was significantly lateralized to the right hemisphere for the voluntary saliva swallow, suggesting a functional hemispheric dominance of the insula for the processing of swallowing.
Although multiple regions of the cerebral cortex have been implicated in swallowing, the functional contributions of each brain area remain unclear. The present study sought to clarify the roles of these cortical foci in swallowing by comparing brain activation associated with voluntary saliva swallowing and voluntary tongue elevation. Fourteen healthy right-handed subjects were examined with single-event-related functional magnetic resonance imaging (fMRI) while laryngeal movements associated with swallowing and tongue movement were simultaneously recorded. Both swallowing and tongue elevation activated 1) the left lateral pericentral and anterior parietal cortex, and 2) the anterior cingulate cortex (ACC) and adjacent supplementary motor area (SMA), suggesting that these brain regions mediate processes shared by swallowing and tongue movement. Tongue elevation activated a larger total volume of cortex than swallowing, with significantly greater activation within the ACC, SMA, right precentral and postcentral gyri, premotor cortex, right putamen, and thalamus. Although a contrast analysis failed to identify activation foci specific to swallowing, superimposed activation maps suggested that the most lateral extent of the left pericentral and anterior parietal cortex, rostral ACC, precuneus, and right parietal operculum/insula were preferentially activated by swallowing. This finding suggests that these brain areas may mediate processes specific to swallowing. Approximately 60% of the subjects showed a strong functional lateralization of the postcentral gyrus toward the left hemisphere for swallowing, whereas 40% showed a similar activation bias for the tongue elevation task. This finding supports the view that the oral sensorimotor cortices within the left and right hemispheres are functionally nonequivalent.
IMPORTANCE There is limited information about the relative effectiveness of cervical cancer screening with primary human papillomavirus (HPV) testing alone compared with cytology in North American populations. OBJECTIVE To evaluate histologically confirmed cumulative incident cervical intraepithelial neoplasia (CIN) grade 3 or worse (CIN3+) detected up to and including 48 months by primary HPV testing alone (intervention) or liquid-based cytology (control). DESIGN, SETTING, AND PARTICIPANTS Randomized clinical trial conducted in an organized Cervical Cancer Screening Program in Canada. Participants were recruited through 224 collaborating clinicians from January 2008 to May 2012, with follow-up through December 2016. Women aged 25 to 65 years with no history of CIN2+ in the past 5 years, no history of invasive cervical cancer, or no history of hysterectomy; who have not received a Papanicolaou test within the past 12 months; and who were not receiving immunosuppressive therapy were eligible. INTERVENTIONS A total of 19 009 women were randomized to the intervention (n = 9552) and control (n = 9457) groups. Women in the intervention group received HPV testing; those whose results were negative returned at 48 months. Women in the control group received liquid-based cytology (LBC) testing; those whose results were negative returned at 24 months for LBC. Women in the control group who were negative at 24 months returned at 48 months. At 48-month exit, both groups received HPV and LBC co-testing. MAIN OUTCOMES AND MEASURES The primary outcome was the cumulative incidence of CIN3+ 48 months following randomization. The cumulative incidence of CIN2+ was a secondary outcome. RESULTS Among 19 009 women who were randomized (mean age, 45 years [10th-90th percentile, 30-59]), 16 374 (8296 [86.9%] in the intervention group and 8078 [85.4%] in the control group) completed the study. At 48 months, significantly fewer CIN3+ and CIN2+ were detected in the intervention vs control group. All Participants Baseline Negative Screen Incidence Rate/1000 (95% CI) at 48 mo Risk Ratio (95% CI) Incidence Rate/1000 (95% CI) at 48 mo Risk Ratio (95% CI) Intervention Group Control Group CIN3+ 2.
This paper reviews clinical, neuroanatomical, and neurophysiological studies that have implicated the cerebral cortex in the initiation and/or regulation of swallowing as well as related functions such as mastication. Cortical dysfunction has been reported to result in a variety of swallowing impairments. Furthermore, swallowing can be evoked and/or modulated by stimulation applied to restricted regions of the cortex. Neuroanatomical investigations and single neuron recording studies also provide some insights into the cortical structures, pathways, and mechanisms that may mediate deglutition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.