For years activated natural killer (A-NK) cells have been explored with respect to their efficacy in anticancer therapy, but, except for some anectdotal reports, no clear clinical benefit has been shown. However, as the understanding about the interactions of NK cells and tumor cells advances, the use of A-NK cells might be revisited with more sophisticated approaches that pay tribute to mechanisms which allow tumor cells to escape immune surveillance. Here the highly cytotoxic NK cell line NK-92 seems to be an attractive alternative for use in adoptive immunotherapy, because it was shown to exhibit substantial antitumor activity against a wide range of malignancies in vitro as well as in xenografted SCID mice. NK-92 cells are characterized by an almost complete lack of killer cell immunglobulin-like receptors (KIRs) yet conserved ability to perforin and granzyme B-mediated cytolytic activity, which make them unique among the few established NK and T cell-like cell lines. NK-92 is the only natural killer cell line that has entered clinical trials. Here we discuss the current status of development of this cell line for adoptive immunotherapy (AIT) of malignancies and review our first clinical experience in patients with advanced cancer who have received repeated transfusions of irradiated NK-92 in a phase I/II trial. Also we discuss issues that address safety aspects of immunotherapy with clonal cell lines and describe further manipulations, which hold the potential of significantly improving the clinical outcome of AIT with NK-92.
In contrast to donor T cells, natural killer (NK) cells are known to mediate anti-cancer effects without the risk of inducing graft-versus-host disease (GvHD). In order to improve cytotoxicity against resistant cancer cells, auspicious efforts have been made with chimeric antigen receptor (CAR) expressing T- and NK cells. These CAR-modified cells express antigen receptors against tumor-associated surface antigens, thus redirecting the effector cells and enhancing tumor-specific immunosurveillance. However, many cancer antigens are also expressed on healthy tissues, potentially leading to off tumor/on target toxicity by CAR-engineered cells. In order to control such potentially severe side effects, the insertion of suicide genes into CAR-modified effectors can provide a means for efficient depletion of these cells. While CAR-expressing T cells have entered successfully clinical trials, experience with CAR-engineered NK cells is mainly restricted to pre-clinical investigations and predominantly to NK cell lines. In this review we summarize the data on CAR expressing NK cells focusing on the possible advantage using these short-lived effector cells and discuss the necessity of suicide switches. Furthermore, we address the compliance of such modified NK cells with regulatory requirements as a new field in cellular immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.