The false killer whale (Pseudorca crassidens) is regarded as Data Deficient globally and in Australia. In most parts of its range, there is little information on its social behaviour, dispersal or ecology. The present study is the first assessment of its movement patterns in Australian waters, on the basis of satellite tracking of four individuals, in the Arafura and Timor Seas from late March to early July 2014. When initially tagged, the four individuals occurred in a single group; they then showed generally similar movement patterns and regularly re-associated. Total distance travelled by tagged individuals ranged from 5161km (over a 54-day period) to 7577km (104 days). Distance from land varied from 100m to 188km (median distance 24km). Individual minimum convex polygons covered an area of 72368 to 86252km2, with a total overlap of 64038km2. Water depths varied from 0.3 to 118m (median 36m). In total, 15% of records were in waters shallower than 10m, and 26% of records were within 10km of land. The present study indicated that false killer whales appear to regularly use coastal and pelagic waters in this region and, hence, should be afforded more conservation attention.
Accessing the world's oceans is essential for monitoring and sustainable management of the maritime domain. Difficulty in reaching remote locations has resulted in sparse coverage, undermining our capacity to deter illegal activities and gather data for physical and biological processes. Uncrewed Surface Vessels (USVs) have existed for over two decades and offer the potential to overcome difficulties associated with monitoring and surveillance in remote regions. However, they are not yet an integral component of maritime infrastructure. We analyse 15 years of non-autonomous and semi-autonomous USV-related literature to determine the factors limiting technological diffusion into everyday maritime operations. We systematically categorised over 1,000 USV-related publications to determine how government, academia and industry sectors use USVs and what drives their uptake. We found a striking overlap between these sectors for 11 applications and nine drivers. Low cost was a consistent and central driver for USV uptake across the three sectors. Product ‘compatibility' and lack of ‘complexity' appear to be major factors limiting USV technological diffusion amongst early adopters. We found that the majority (21 of 27) of commercially available USVs lacked the complexity required for multiple applications in beyond the horizon operations. We argue that the best value for money to advance USV uptake is for designs that offer cross-disciplinary applications and the ability to operate in an unsheltered open ocean without an escort or mothership. The benefits from this technological advancement can excel under existing collaborative governance frameworks and are most significant for remote and developing maritime nations.
The Observing Air–Sea Interactions Strategy (OASIS) is a new United Nations Decade of Ocean Science for Sustainable Development programme working to develop a practical, integrated approach for observing air–sea interactions globally for improved Earth system (including ecosystem) forecasts, CO2 uptake assessments called for by the Paris Agreement, and invaluable surface ocean information for decision makers. Our “Theory of Change” relies upon leveraged multi-disciplinary activities, partnerships, and capacity strengthening. Recommendations from >40 OceanObs’19 community papers and a series of workshops have been consolidated into three interlinked Grand Ideas for creating #1: a globally distributed network of mobile air–sea observing platforms built around an expanded array of long-term time-series stations; #2: a satellite network, with high spatial and temporal resolution, optimized for measuring air–sea fluxes; and #3: improved representation of air–sea coupling in a hierarchy of Earth system models. OASIS activities are organized across five Theme Teams: (1) Observing Network Design & Model Improvement; (2) Partnership & Capacity Strengthening; (3) UN Decade OASIS Actions; (4) Best Practices & Interoperability Experiments; and (5) Findable–Accessible–Interoperable–Reusable (FAIR) models, data, and OASIS products. Stakeholders, including researchers, are actively recruited to participate in Theme Teams to help promote a predicted, safe, clean, healthy, resilient, and productive ocean.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.