Background Global positioning systems (GPS) and altimeters are increasingly used to monitor vertical space use by aerial species, a key aspect of their ecological niche, that we need to know to manage our own use of the airspace, and to protect those species. However, there are various sources of error in flight height data (“height” above ground, as opposed to “altitude” above a reference like the sea level). First the altitude is measured with a vertical error from the devices themselves. Then there is error in the ground elevation below the tracked animals, which translates into error in flight height computed as the difference between altitude and ground elevation. Finally, there is error in the horizontal position of the animals, which translates into error in the predicted ground elevation below the animals. We used controlled field trials, simulations, and the reanalysis of raptor case studies with state-space models to illustrate the effect of improper error management. Results Errors of a magnitude of 20 m appear in benign conditions for barometric altimeters and GPS vertical positioning (expected to be larger in more challenging context). These errors distort the shape of the distribution of flight heights, inflate the variance in flight height, bias behavioural state assignments, correlations with environmental covariates, and airspace management recommendations. Improper data filters such as removing all negative flight height records introduce several biases in the remaining dataset, and preclude the opportunity to leverage unambiguous errors to help with model fitting. Analyses that ignore the variance around the mean flight height, e.g., those based on linear models of flight height, and those that ignore the variance inflation caused by telemetry errors, lead to incorrect inferences. Conclusion The state-space modelling framework, now in widespread use by ecologists and increasingly often automatically implemented within on-board GPS data processing algorithms, makes it possible to fit flight models directly to the output of GPS devices, with minimal data pre-selection, and to analyse the full distribution of flight heights, not just the mean. In addition to basic research about aerial niches, behaviour quantification, and environmental interactions, we highlight the applied relevance of our recommendations for airspace management and the conservation of aerial wildlife.
BackgroundThe development of satellite tracking technology enables the gathering of huge amounts of accurate data on animal movements over measured time intervals, to reveal essential information about species’ patterns of spatial use. This information is especially important in optimizing the design of conservation and management strategies for endangered species. In this study, we analysed the main drivers of daily patterns in the flight activity of the threatened Bearded Vulture Gypaetus barbatus. We studied 19 Bearded Vultures tagged with solar-powered GPS transmitters from 2006 to 2016 in the Pyrenees (Spain). We assessed the relative influence of external factors (season and daylight time) and internal factors (sex, breeding season and territorial status) on their daily activity behaviour by computing mean hourly distance travelled, maximum displacement and cumulative distance travelled per hour.ResultsOur findings showed a clear difference in all the estimators between territorial and non-territorial (floating) members of the population, showing that non-territorial individuals spent much longer in flight and travelled larger distances per day. We detected an important influence of daylight time and season on the daily rhythms of Bearded Vultures; flight activity increased during the last three quarters of daylight and was greatest in the spring. Breeding period and sex had also an effect on the maximum displacement and cumulative distance travelled. Individuals flew more during the breeding period and females tended to exhibit greater cumulative and maximum distances per hour than males regardless of breeding season.ConclusionsPyrenean Bearded Vultures flight daily activity was strongly influenced by daylight time, season, and territorial status, while individual sex and breeding season showed a milder effect on the birds’ movement behaviour. This study gives a novel insight into how external factors act as main drivers of the daily flight activity pattern of a long-lived avian scavenger.Electronic supplementary materialThe online version of this article (10.1186/s12898-018-0195-7) contains supplementary material, which is available to authorized users.
BackgroundGlobal positioning systems (GPS) and altimeters are increasingly used to monitor vertical space use by aerial species, a key aspect of their niche that we need to know to understand their ecology and conservation needs, and to manage our own use of the airspace. However, there are various sources of error in flight height data (“height” above ground, as opposed to “altitude” above a reference like the sea level): vertical error from the devices themselves, error in the ground elevation below the tracked animals, and error in the horizontal position of the animals and thus the predicted ground elevation below them.MethodsWe used controlled field trials, simulations, and the reanalysis of raptor case studies with state-space models to illustrate the effect of improper error management.ResultsErrors of a magnitude of 20 meters appear in benign conditions (expected to be larger in more challenging context). These errors distort the shape of the distribution of flight heights, inflate the variance in flight height, bias behavioural state assignments, correlations with environmental covariates, and airspace management recommendations. Improper data filters such as removing all negative recorded flight height records introduce several biases in the remaining dataset, and preclude the opportunity to leverage unambiguous errors to help with model fitting. Analyses that ignore the variance around the mean flight height, e.g., those based on linear models of flight height, and those that ignore the variance inflation caused by telemetry errors, lead to incorrect inferences.ConclusionThe state-space modelling framework, now in widespread use by ecologists and increasingly often automatically implemented within on-board GPS data processing algorithms, makes it possible to fit flight models directly to raw flight height records, with minimal data pre-selection, and to analyse the full distribution of flight heights, not just the mean. In addition to basic research about aerial niches, behaviour quantification, and environmental interactions, we highlight the applied relevance of our recommendations for airspace management and the conservation of aerial wildlife.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.