The role of diatoms as key food for copepods at the base of pelagic food chains has been questioned recently on the grounds of toxicity. We show, using unialgal versus mixed algal diets of different nutritional status (i.e., nitrogen:carbon ratio) fed to Acartia tonsa, that diatoms per se are not toxic but that single-diatom diets are inadequate. Additionally, the nutritional state of the phytoplankton has a profound effect on copepod growth and growth efficiency. The ecological significance of laboratory demonstrations of diatom toxicity needs to be reconsidered.
Planktonic flagellates and ciliates are the major consumers of phytoplankton and bacterioplankton in aquatic environments, playing a pivotal role in carbon cycling and nutrient regeneration. Despite certain unicellular predators using chemosensory responses to locate and select their prey, the biochemical mechanisms behind prey reception and selection have not been elucidated. Here we identify a Ca(2+)-dependent, mannose-binding lectin on the marine dinoflagellate Oxyrrhis marina, which is used as a feeding receptor for recognizing prey. Blocking the receptor using 20 microM mannose-BSA inhibited ingestion of phytoplankton prey, Isochrysis galbana, by 60%. In prey selection studies, O. marina ingested twice as many 6 mum diameter beads coated with mannose-BSA as those coated with galNac-BSA. When pre-incubated with mannose-BSA, O. marina was no longer able to discriminate between different sugar-coated beads. Thus, these findings reveal molecular mechanisms of protozoan prey recognition. Our results also indicate the functional similarity between cellular recognition used by planktonic protozoa to discriminate between different prey items, and those used by metazoan phagocytic blood cells to recognize invading microorganisms.
Populations of the copepod Acartia tonsa were fed a mixture of algal prey (diatom Thalassiosira weissflogii, prymnesiophyte Emiliania huxleyi, dinoflagellate Aureodinium [Gymnodium] pigmentosum) supplied at saturating concentrations, grown under either nitrogen-sufficient or nitrogen-deplete conditions, in order to study the impact of food quality on production and development throughout the life cycle of the copepod. Changes in predator population structure and biomass were recorded, along with consumption of each of the algal groups, permitting C and N growth efficiencies to be estimated. There was a clear difference in the Acartia tonsa population structure when fed N-sufficient or N-deplete prey, with those fed N-deplete prey slower to develop and reproduce and laying fewer eggs. Algal nutrient status affected selectivity between the diatom and dinoflagellate, the latter being favoured under nutrient-deplete conditions, perhaps in part because their C:N ratio was less susceptible to altered nutrient status. There was no clear difference in the N growth efficiency (N-GE, typically 5%) between N-sufficient and N-deplete prey, but certainly efficiency did not increase with N-deplete prey. C growth efficiency (C-GE) declined from 5 to 2% with N-deplete prey. However, while the ratio of N-GE:C-GE was clearly different between N-sufficient (1) and N-deplete (2.5) treatments, actual growth efficiencies increased with time during the progression to later life history stages, culminating in highest efficiencies during active egg production. Caution should be exercised in assigning GE and predation rates in models incorporating zooplankton feeding on prey of variable nutrient status; these parameters are not constants and GE estimates from egg production experiments are likely to significantly overestimate efficiencies over the whole copepod life cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.