1. The inactivation of an RNA-containing bacteriophage after reaction with four methylating agents was studied. Measurements of the extent of methylation of the RNA and of the nature and amounts of the various reaction products were made. In experiments with dimethyl sulphate and methyl methanesulphonate inactivation can be quantitatively accounted for by methylation at two of the positions involved in hydrogen bonding: N-1 of adenine and N-3 of cytosine. In experiments with N-methyl-N-nitrosourea and N-methyl-N'-nitro-N-nitrosoguanidine methylation at N-1 of adenine and N-3 of cytosine accounts for only about one-half of the observed inactivation. Scission of the RNA chain during reaction accounts for a further 20% of the inactivation. To account for the remainder it seems necessary to postulate that formation of O(6)-methylguanine constitutes a lethal lesion. 2. Breaks in the RNA chain formed on reaction with the nitroso derivatives presumably result from methylation of the phosphate diester group followed by hydrolysis of the unstable triester thus formed.
The extent of biological inactivation and of the degradation of the RNA after reaction of bacteriophage R17 with ethyl methanesulphonate, isopropyl methanesulphonate and N-ethyl-N-nitrosourea was studied. Formation of breaks in the RNA chain probably results from hydrolysis of phosphotriesters formed in the alkylation reactions. Near neutral pH the ethyl and isopropyl phosphotriesters are sufficiently stable for the kinetics of the hydrolysis reaction to be followed. Results indicate that the rate of hydrolysis increases rapidly as the pH is raised. The evidence shows that a phosphotriester group does not itself constitute a lethal lesion. The extent of phosphotriester formation by the different agents is discussed in terms of reaction mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.