ABSTRACT:Glucuronidation is a listed clearance mechanism for 1 in 10 of the top 200 prescribed drugs. The objective of this article is to encourage those studying ligand interactions with UDP-glucuronosyltransferases (UGTs) to adequately consider the potential consequences of in vitro UGT inhibition in humans. Spurred on by interest in developing potent and selective inhibitors for improved confidence around UGT reaction phenotyping, and the increased availability of recombinant forms of human UGTs, several recent studies have reported in vitro inhibition of UGT enzymes. In some cases, the observed potency of UGT inhibitors in vitro has been interpreted as having potential relevance in humans via pharmacokinetic drug-drug interactions. Although there are reported examples of clinically relevant drug-drug interactions for UGT substrates, exposure increases of the aglycone are rarely greater than 100% in the presence of an inhibitor relative to its absence (i.e., AUC i /AUC <2). This small magnitude in change is in contrast to drugs primarily cleared by cytochrome P450 enzymes, where exposures have been reported to increase as much as 35-fold on coadministration with an inhibitor (e.g., ketoconazole inhibition of CYP3A4-catalyzed terfenadine metabolism). In this article the evidence for purported clinical relevance of potent in vitro inhibition of UGT enzymes will be assessed, taking the following into account: in vitro data on the enzymology of glucuronide formation from aglycone, pharmacokinetic principles based on empirical data for inhibition of metabolism, and clinical data on the pharmacokinetic drug-drug interactions of drugs primarily cleared by glucuronidation.
This article is available online at http://dmd.aspetjournals.org ABSTRACT:Voriconazole is a triazole antifungal agent with potent activity against a broad spectrum of clinically significant pathogens. In vivo and in vitro studies have demonstrated that voriconazole is extensively metabolized, with the major circulating metabolite resulting from N-oxidation. In the present study, we report on the
ABSTRACT:Cytochrome P450 3A4 (CYP3A4) is the most important enzyme in drug metabolism and because it is the most frequent target for pharmacokinetic drug-drug interactions (DDIs) it is highly desirable to be able to predict CYP3A4-based DDIs from in vitro data. In this study, the prediction of clinical DDIs for 30 drugs on the pharmacokinetics of midazolam, a probe substrate for CYP3A4, was done using in vitro inhibition, inactivation, and induction data. Two DDI prediction approaches were used, which account for effects at both the liver and intestine. The first was a model that simultaneously combines reversible inhibition, time-dependent inactivation, and induction data with static estimates of relevant in vivo concentrations of the precipitant drug to provide point estimates of the average magnitude of change in midazolam exposure. This model yielded a success rate of 88% in discerning DDIs with a mean -fold error of 1.74. The second model was a computational physiologically based pharmacokinetic model that uses dynamic estimates of in vivo concentrations of the precipitant drug and accounts for interindividual variability among the population (Simcyp). This model yielded success rates of 88 and 90% (for "steady-state" and "time-based" approaches, respectively) and mean -fold errors of 1.59 and 1.47. From these findings it can be concluded that in vivo DDIs for CYP3A4 can be predicted from in vitro data, even when more than one biochemical phenomenon occurs simultaneously.
Targeted quantitative proteomics using heavy isotope dilution techniques is increasingly being utilized to quantify proteins, including UGT enzymes, in biological matrices. Here we present a multiplexed method using nanoLC-MS/MS and multiple reaction monitoring (MRM) to quantify 14 UGT1As and UGT2Bs in liver matrices. Where feasible, we employ two or more proteotypic peptides per protein, with only four proteins quantified with only one proteotypic peptide. We apply the method to analysis of a library of 60 human liver microsome (HLM) and matching S9 samples. Ten of the UGT isoforms could be detected in liver, and the expression of each was consistent with mRNA expression reported in the literature. UGT2B17 was unusual in that ∼30% of liver microsomes had no or little (<0.5 pmol/mg protein) content, consistent with a known common polymorphism. Liver S9 UGT concentrations were approximately 10-15% those of microsomes. The method was robust, precise, and reproducible and provides novel UGT expression data in human liver that will benefit rational approaches to evaluate metabolism in drug development.
ABSTRACT:The measurement of the effect of new chemical entities on human UDP-glucuronosyltransferase (UGT) marker activities using in vitro experimentation represents an important experimental approach in drug development to guide clinical drug-interaction study designs or support claims that no in vivo interaction will occur. Selective high-performance liquid chromatography-tandem mass spectrometry functional assays of authentic glucuronides for five major hepatic UGT probe substrates were developed: -estradiol-3-glucuronide (UGT1A1), trifluoperazine-N-glucuronide (UGT1A4), 5-hydroxytryptophol-O-glucuronide (UGT1A6), propofol-O-glucuronide (UGT1A9), and zidovudine-5-glucuronide (UGT2B7). High analytical sensitivity permitted characterization of enzyme kinetic parameters at low human liver microsomal and recombinant UGT protein concentration (0.025 mg/ml), which led to a new recommended optimal universal alamethicin activation concentration of 10 g/ml for microsomes. Alamethicin was not required for recombinant UGT incubations. Apparent enzyme kinetic parameters, particularly for UGT1A1 and UGT1A4, were affected by nonspecific binding. Unbound intrinsic clearance for UGT1A9 and UGT2B7 increased significantly after addition of 2% bovine serum albumin, with minimal changes for UGT1A1, UGT1A4, and UGT1A6. Eleven potential UGT and cytochrome P450 inhibitors were evaluated as UGT inhibitors, resulting in observation of nonselective UGT inhibition by chrysin, mefenamic acid, silibinin, tangeretin, ketoconazole, itraconazole, ritonavir, and verapamil. The pan-cytochrome P450 inhibitor, 1-aminobenzotriazole, minimally inhibited UGT activities and may be useful in reaction phenotyping of mixed UGT and cytochrome P450 substrates. These methods should prove useful in the routine assessments of the potential for new drug candidates to elicit pharmacokinetic drug interactions via inhibition of human UGT activities and the identification of UGT enzymeselective chemical inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.