Host tRNAs cleaved near the anticodon occur specifically in T4‐infected Escherichia coli prr strains which restrict polynucleotide kinase (pnk) or RNA ligase (rli) phage mutants. The cleavage products are transient with wt but accumulate in pnk‐ or rli‐ infections, implicating the affected enzymes in repair of the damaged tRNAs. Their roles in the pathway were elucidated by comparing the mutant infection intermediates with intact tRNA counterparts before or late in wt infection. Thus, the T4‐induced anticodon nuclease cleaves lysine tRNA 5′ to the wobble position, yielding 2′:3′‐P greater than and 5′‐OH termini. Polynucleotide kinase converts them into a 3′‐OH and 5′ P pair joined in turn by RNA ligase. Presumably, lysine tRNA depletion, in the absence of polynucleotide kinase and RNA ligase mediated repair, underlies prr restriction. However, the nuclease, kinase and ligase may benefit T4 directly, by adapting levels or decoding specificities of host tRNAs to T4 codon usage.
The optional Escherichia coli prr locus restricts phage T4 mutants lacking polynucleotide kinase or RNA ligase. Underlying this restriction is the specific manifestation of the T4-induced anticodon nuclease, an enzyme which triggers the cleavage-ligation of the host tRNALYS. We report here the molecular cloning, nucleotide sequence and mutational analysis of prr-associated DNA. The results indicate that prr encodes a latent form of anticodon nuclease consisting of a core enzyme and cognate masking agents. They suggest that the T4-encoded factors of anticodon nuclease counteract the prr-encoded masking agents, thus activating the latent enzyme. The encoding of a tRNA cleavage-ligation pathway by two separate genetic systems which cohabitate E.coli may provide a clue to the evolution of RNA splicing mechanisms mediated by proteins.
Respiratory syncytial virus (RSV) is a major respiratory pathogen of infants and young children. Multiple strains of both subgroup A and B viruses circulate during each seasonal epidemic. Genetic heterogeneity among RSV genomes, in large part due to the error prone RNA-dependent, RNA polymerase, could mediate variations in pathogenicity. We evaluated clinical strains of RSV for their ability to induce the innate immune response. Subgroup B viruses were used to infect human pulmonary epithelial cells (A549) and primary monocyte-derived human macrophages (MDM) from a variety of donors. Secretions of IL-6 and CCL5 (RANTES) from infected cells were measured following infection. Host and viral transcriptome expression were assessed using RNA-SEQ technology and the genomic sequences of several clinical isolates were determined. There were dramatic differences in the induction of IL-6 and CCL5 in both A549 cells and MDM infected with a variety of clinical isolates of RSV. Transcriptome analyses revealed that the pattern of innate immune activation in MDM was virus-specific and host-specific. Specifically, viruses that induced high levels of secreted IL-6 and CCL5 tended to induce cellular innate immune pathways whereas viruses that induced relatively low level of IL-6 or CCL5 did not induce or suppressed innate immune gene expression. Activation of the host innate immune response mapped to variations in the RSV G gene and the M2-1 gene. Viral transcriptome data indicated that there was a gradient of transcription across the RSV genome though in some strains, RSV G was the expressed in the highest amounts at late times post-infection. Clinical strains of RSV differ in cytokine/chemokine induction and in induction and suppression of host genes expression suggesting that these viruses may have inherent differences in virulence potential. Identification of the genetic elements responsible for these differences may lead to novel approaches to antiviral agents and vaccines.
BackgroundRespiratory syncytial virus (RSV) is the major respiratory pathogen of infants and young children. During each seasonal epidemic, multiple strains of both subgroup A and B viruses circulate in the community. Like other RNA viruses, RSV genome replication is prone to errors that results in a heterogeneous population of viral strains some of which may possess differences in virulence. We sought to determine whether clinical isolates of RSV differ in their capacity to induce inflammatory cytokines IL-6 and CCL5 (previously known as RANTES [regulated upon activation, normal T-cell expressed and secreted protein]), which are known to be induced in vitro and in vivo in response to RSV, during infection of A549 cells.ResultsScreening of subgroup A and B isolates revealed heterogeneity among strains to induce IL-6 and CCL5. We chose two subgroup B strains, New Haven (NH)1067 and NH1125, for further analysis because of their marked differences in cytokine inducing properties and because subgroup B strains, in general, are less genetically heterogeneous as compared to subgroup A strains. At 12 and 24 hours post infection RSV strains, NH1067 and NH1125 differed in their capacity to induce IL-6 by an order of magnitude or more. The concentrations of IL-6 and CCL5 were dependent on the dose of infectious virus and the concentration of these cytokines induced by NH1125 was greater than that of those induced by NH1067 when the multiplicity of infection of NH1067 used was as much as 10-fold higher than that of NH1125. The induction of IL-6 was dependent on viable virus as infection with UV-inactivated virus did not induce IL-6. The difference in IL-6 induction most likely could not be explained by differences in viral replication kinetics. The intracellular level of RSV RNA, as determined by quantitative RT-PCR, was indistinguishable between the 2 strains though the titer of progeny virus produced by NH1125 was greater than that produced by NH1067 at 16, 24 and 36 hours but essentially equal at 48 and 72 hours. Full genome sequencing of the 2 strains revealed 193 polymorphisms and 4 insertions in NH1067when compared to NH1125 (2 single base insertions in non-coding regions and 2 duplications of 3 and 60 bases in the RSV G gene). Of the polymorphisms, 147 occurred in coding regions and only 30 resulted in amino acid changes in 7 of the RSV genes.ConclusionsThese data suggest that RSV strains may not be homogeneous with regard to pathogenesis or virulence. Identification of the genetic polymorphisms associated with variations in cytokine induction may lead to insights into RSV disease and to the development of effective antiviral agents and vaccines.
Gold nanoparticle (GNP)-based aggregation assay is simple, fast, and employs a colorimetric detection method. Although previous studies have reported using GNP-based colorimetric assay to detect biological and chemical targets, a mechanistic and quantitative understanding of the assay and effects of GNP parameters on the assay performance is lacking. In this work, we investigated this important aspect of the GNP aggregation assay including effects of GNP concentration and size on the assay performance to detect malarial DNA. Our findings lead us to propose three major competing factors that determine the final assay performance including the nanoparticle aggregation rate, plasmonic coupling strength, and background signal. First, increasing nanoparticle size reduces the Brownian motion and thus aggregation rate, but significantly increases plasmonic coupling strength. We found that larger GNP leads to stronger signal and improved limit of detection (LOD), suggesting a dominating effect of plasmonic coupling strength. Second, higher nanoparticle concentration increases the probability of nanoparticle interactions and thus aggregation rate, but also increases the background extinction signal. We observed that higher GNP concentration leads to stronger signal at high target concentrations due to higher aggregation rate. However, the fact the optimal LOD was found at intermediate GNP concentrations suggests a balance of two competing mechanisms between aggregation rate and signal/background ratio. In summary, our work provides new guidelines to design GNP aggregation-based POC devices to meet the signal and sensitivity needs for infectious disease diagnosis and other applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.