Among vertebrate gastrointestinal microbiome studies, complete representation of taxa is limited, particularly among reptiles. Here, we provide evidence for previously unrecognized host-microbiome associations along the gastrointestinal tract from the American alligator, a crown archosaur with shared ancestry to extinct taxa, including dinosaurs. Microbiome compositional variations reveal that the digestive system consists of multiple, longitudinally heterogeneous microbiomes that strongly correlate to specific gastrointestinal tract organs, regardless of rearing histories or feeding status. A core alligator gut microbiome comprised of Fusobacteria, but depleted in Bacteroidetes and Proteobacteria common to mammalians, is compositionally unique from other vertebrate gut microbiomes, including other reptiles, fish, and herbivorous and carnivorous mammals. As such, modern alligator gut microbiomes advance our understanding of archosaur gut microbiome evolution, particularly if conserved host ecology has retained archosaur-specific symbioses over geologic time.
Reptiles and fish have robust regenerative powers for tooth renewal. However, extant mammals can either renew their teeth one time (diphyodont dentition) or not at all (monophyodont dentition). Humans replace their milk teeth with permanent teeth and then lose their ability for tooth renewal. Here, we study tooth renewal in a crocodilian model, the American alligator, which has well-organized teeth similar to mammals but can still undergo life-long renewal. Each alligator tooth is a complex family unit composed of the functional tooth, successional tooth, and dental lamina. Using multiple mitotic labeling, we map putative stem cells to the distal enlarged bulge of the dental lamina that contains quiescent odontogenic progenitors that can be activated during physiological exfoliation or artificial extraction. Tooth cycle initiation correlates with β-catenin activation and soluble frizzled-related protein 1 disappearance in the bulge. The dermal niche adjacent to the dermal lamina dynamically expresses neural cell adhesion molecule, tenascin-C, and other molecules. Furthermore, in development, asymmetric β-catenin localization leads to the formation of a heterochronous and complex tooth family unit configuration. Understanding how these signaling molecules interact in tooth development in this model may help us to learn how to stimulate growth of adult teeth in mammals.Wnt | placode | slow cycling | regeneration
Eggs were sampled from 22 wild American alligator nests from the Rockefeller Wildlife Refuge in south-west Louisiana, along with the females guarding the nests. Three nests were sampled in 1995 and 19 were sampled in 1997. Females and offspring from all clutches were genotyped using five polymorphic microsatellite loci and the three nests from 1995 were also genotyped using one allozyme locus. Genotypes of the hatchlings were consistent with the guarding females being the mothers of their respective clutches. Multiple paternity was found in seven of the 22 clutches with one being fathered by three males, and the remaining six clutches having genotypes consistent with two males per clutch. Paternal contributions of multiply sired clutches were skewed. Some males sired hatchlings of more than one of the 22 clutches either as one of two sires of a multiple paternity clutch, as the sole sire of two different clutches, or as the sole sire of one clutch and one of two sires of a multiply sired clutch. There was no significant difference between females that had multiple paternity clutches and those that had singly sired clutches with respect to female total length (P = 0.844) and clutch size (P = 0.861). Also, there was no significant correlation between genetic relatedness of nesting females and pairwise nest distances (r2 = 0.003, F1,208 = 0.623, P = 0.431), indicating that females in this sample that nested close to one another were no more related than any two nesting females chosen at random. Eleven mutations were detected among hatchlings at the five loci over the 22 clutches. Most of these mutations (eight of 11) occurred at Ami(mu)-17, the only compound microsatellite locus of the five used in this study, corresponding to a mutation rate of 1.7 x 10-3. Finally, most of the mutations (82%) were homoplasious, i.e., mutating to an allelic state already present in this Louisiana population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.