This paper considers some statistical aspects of applying control variates to achieve variance reduction in the estimation of a vector of response variables in Monte Carlo simulation. It gives a result that quantifies the loss in variance reduction caused by the estimation of the optimal control matrix. For the one-dimensional case, we derive analytically the optimal size of the vector of control variates under specific assumptions on the covariance matrix. For the multidimensional case, our numerical results show that good variance reduction is achieved when the number of control variates is relatively small (approximately of the same order as the number of unknown parameters). Finally, we give some recommendations for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.