He-atom scattering is a well established and valuable tool for investigating surface structure. The correct interpretation of the experimental data requires an accurate description of the He-surface interaction potential. A quantum-mechanical treatment of the interaction potential is presented using the current dominant methodologies for computing ground state energies (Hartree-Fock, local and hybrid-exchange density functional theory) and also a novel post-Hartree-Fock ab initio technique for periodic systems (a local implementation of Møller-Plesset perturbation theory at second order). The predicted adsorption well depth and long range behavior of the interaction are compared with that deduced from experimental data in order to assess the accuracy of the interaction potential.
The experimental line shape broadening observed in adsorbate diffusion on metal surfaces with increasing coverage is usually related to the nature of the adsorbate-adsorbate interaction. Here we show that this broadening can also be understood in terms of a fully stochastic model just considering two noise sources: (i) a Gaussian white noise accounting for the surface friction, and (ii) a shot noise replacing the physical adsorbate-adsorbate interaction potential. Furthermore, contrary to what could be expected, for relatively weak adsorbate-substrate interactions the opposite effect is predicted: line shapes get narrower with increasing coverage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.