Textiles able to perform electronic functions are known as e-textiles, and are poised to revolutionise the manner in which rehabilitation and assistive technology is provided. With numerous reports in mainstream media of the possibilities and promise of e-textiles it is timely to review research work in this area related to neurological rehabilitation.This paper provides a review based on a systematic search conducted using EBSCO- Health, Scopus, AMED, PEDro and ProQuest databases, complemented by articles sourced from reference lists. Articles were included if the e-textile technology described had the potential for use in neurological rehabilitation and had been trialled on human participants. A total of 108 records were identified and screened, with 20 meeting the broad review inclusion criteria. Nineteen user trials of healthy people and one pilot study with stroke participants have been reported.The review identifies two areas of research focus; motion sensing, and the measurement of, or stimulation of, muscle activity. In terms of motion sensing, E-textiles appear able to reliably measure gross movement and whether an individual has achieved a predetermined movement pattern. However, the technology still remains somewhat cumbersome and lacking in resolution at present. The measurement of muscle activity and the provision of functional electrical stimulation via e-textiles is in the initial stages of development but shows potential for e-textile expansion into assistive technologies.The review identified a lack of high quality clinical evidence and, in some cases, a lack of practicality for clinical application. These issues may be overcome by engagement of clinicians in e-textile research and using their expertise to develop products that augment and enhance neurological rehabilitation practice.
Objective: To observe upper limb activity patterns of people with stroke during sub-acute rehabilitation to inform the development of treatment strategies for upper limb rehabilitation. Design: Observational study of upper limb activity. Methods: Twenty participants admitted for sub-acute rehabilitation following stroke were observed during a week day for 1 minute every 10 min between 7 am and 7 pm. Upper limb activity was recorded and categorized into five types of movement. Results: Participants used either one or both upper limbs for 45.8% of the observation time. The affected arm moved 26.4% of the time, with most movement occurring in conjunction with the unaffected arm (18.9% of the time) and only 7.5% of the time being movement of the affected arm by itself. The largest proportion of upper limb activity was observed during mealtimes. Conclusions: Recognition of the need to improve upper limb outcomes after stroke has not yet translated into changes in the amount of upper limb activity undertaken during sub-acute rehabilitation. Opportunities to rehabilitate the hemiplegic upper limb are not fully realized. The dominance of bilateral movement in the early stages after stroke may provide scope for interventions that maximize this aspect of motor control. ä IMPLICATIONS FOR REHABILITATION Despite advances in rehabilitation, time spent in upper limb activity following stroke is very low, particularly in the affected arm. Most movement of the affected arm occurs in conjunction with the unaffected arm. There is an urgent need to redress this low level of movement, given the importance of upper limb recovery to quality of life for people following stroke.
ObjectiveNoisy galvanic vestibular stimulation (nGVS) has been used to boost vestibular afferent information to the central nervous system. This has the potential to improve postural control for people for whom vestibular signals are weak, such as in bilateral vestibulopathy (BVP). The aim of this systematic review and meta-analysis is to investigate the evidence for nGVS as a modality to improve postural control in people with BVP.MethodsA comprehensive systematic search was conducted of five databases up to July 2022 to find studies applying nGVS to people with BVP, with the aim of improving postural control. Two independent reviewers screened and identified eligible studies, completed a risk of bias evaluation (Cochrane) and extracted relevant data. The standardized mean difference (SMD) based on Hedges' g was calculated as a measure of effect size for the primary outcome measure that best identified postural control, and a forest plot generated.ResultsSeven studies met the eligibility criteria, with five being suitable for meta-analysis. Meta-analysis revealed a moderate effect in favor of nGVS improving postural control during standing and walking [pooled SMD = 0.47 95% CI (0.25, 0.7)]. nGVS-mediated improvements in postural control were most evident in observations of reduced sway velocity when standing on a firm surface with eyes closed, and in the reduced variability of gait parameters, particularly those measuring lateral stability.ConclusionsCoincident nGVS in people with BVP improves postural control during standing and walking. This improvement appears to be context specific, in that vestibular augmentation is most effective in situations where visual inputs are limited, and where reliable context specific proprioceptive cues are available. Further research is warranted investigating additional circumstances in which nGVS improves postural control, including investigating the residual, and sustained effects of nGVS.Systematic review registrationhttps://www.crd.york.ac.uk/prospero/display_record.php?RecordID=342147, identifier: 342147.
Background As many as 80% of stroke survivors experience upper limb (UL) disability. The strong relationships between disability, lost productivity, and ongoing health care costs mean reducing disability after stroke is critical at both individual and society levels. Unfortunately, the amount of UL-focused rehabilitation received by people with stroke is extremely low. Activity monitoring and promotion using wearable devices offer a potential technology-based solution to address this gap. Commonly, wearable devices are used to deliver a haptic nudge to the wearer with the aim of promoting a particular behavior. However, little is known about the effectiveness of haptic nudging in promoting behaviors in patient populations. Objective This study aimed to estimate the effect of haptic nudging delivered via a wrist-worn wearable device on UL movement in people with UL disability following stroke undertaking inpatient rehabilitation. Methods A multiple-period randomized crossover design was used to measure the association of UL movement with the occurrence of haptic nudge reminders to move the affected UL in 20 people with stroke undertaking inpatient rehabilitation. UL movement was observed and classified using movement taxonomy across 72 one-minute observation periods from 7:00 AM to 7:00 PM on a single weekday. On 36 occasions, a haptic nudge to move the affected UL was provided just before the observation period. On the other 36 occasions, no haptic nudge was given. The timing of the haptic nudge was randomized across the observation period for each participant. Statistical analysis was performed using mixed logistic regression. The effect of a haptic nudge was evaluated from the intention-to-treat dataset as the ratio of the odds of affected UL movement during the observation period following a “Planned Nudge” to the odds of affected limb movement during the observation period following “No Nudge.” Results The primary intention-to-treat analysis showed the odds ratio (OR) of affected UL movement following a haptic nudge was 1.44 (95% CI 1.28-1.63, P<.001). The secondary analysis revealed an increased odds of affected UL movement following a Planned Nudge was predominantly due to increased odds of spontaneous affected UL movement (OR 2.03, 95% CI 1.65-2.51, P<.001) rather than affected UL movement in conjunction with unaffected UL movement (OR 1.13, 95% CI 0.99-1.29, P=.07). Conclusions Haptic nudging delivered via a wrist-worn wearable device increases affected UL movement in people with UL disability following stroke undertaking inpatient rehabilitation. The promoted movement appears to be specific to the instructions given. Trial Registration Australia New Zealand Clinical Trials Registry 12616000654459; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=370687&isReview=true
SummaryThere are complications of spinal cord paralysis peculiar to the extended care period.These may be motor skeletal, neurogenic, visceral and psychogenic.If practised regularly, prevention can be very effective in reducing the disability in all groups. Limb oedema, joint contractu res , myasthenia and pain can be materially reduced by regular activity, maintaining joint mobility and the use of recreational motor skeletal activities.Urinary tract infection and decubiti can be largely eliminated by careful attention to anti-bacterial suppression and better hygiene, both personal and at home. Decubiti can be eliminated by regular skin care and eliminating friction and pressure. Most episodes of such complications can be effectively prevented and treated by the expert home visiting nurse.Social complications and drug abuse are areas of increasing concern. These can be kept to a minimum by regular assessment and, most importantly, when diagnosed early by the home visiting professional.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.