This paper presents the development, design, and implementation of a precision control system for a large, sparse-aperture space-deployable telescope testbed. Aspects of the testbed and laboratory environment relevant to nanometer-level control and performance objectives are provided. There are four main objectives of the control system: 1) reduction of natural resonances of the supporting structure, 2) rejection of tonal disturbances, 3) tip, tilt, and piston set-point tracking for optical surfaces, and 4) reduction in settling time of optical surfaces after an impulsive slew-type disturbance. The development of a three-input, three-output, high-bandwidth structural control system for the testbed is presented, and experimental data demonstrating that all objectives were attained is provided. The paper concludes with a discussion of the results and a description of research issues remaining to be addressed.
In the AgriPark project, a transdisciplinary approach was used to develop ways of integrating agriculture better into Regional Nature Parks. It revealed that there are no ready-made solutions and longer processes involving a wide range of stakeholders are needed to develop closer cooperation between parks and agriculture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.