A hypervirulent (hvKp) pathotype is undergoing global dissemination. In contrast to the usual health care-associated epidemiology of classical (cKp) infections, hvKp causes tissue-invasive infections in otherwise healthy individuals from the community, often involving multiple sites. An accurate test to identify hvKp strains is needed for improved patient care and epidemiologic studies. To fill this knowledge gap, clinical criteria or random blood isolates from North American and United Kingdom strain collections were used to assemble hvKp-rich ( = 85) and cKp-rich ( = 90) strain cohorts, respectively. The isolates were then assessed for multiple candidate biomarkers hypothesized to accurately differentiate the two cohorts. The genes ,, , plasmid-borne gene ( ), and all demonstrated >0.95 diagnostic accuracy for identifying strains in the hvKp-rich cohort. Next, to validate this epidemiological analysis, all strains were assessed experimentally in a murine sepsis model. ,, ,, and were all associated with a hazard ratio of>25 for severe illness or death, additionally supporting their utility for identifying hvKp strains. Quantitative siderophore production of ≥30 μg/ml also strongly predicted strains as members of the hvKp-rich cohort (accuracy, 0.96) and exhibited a hazard ratio of 31.7 for severe illness or death. The string test, a widely used marker for hvKp strains, performed less well, achieving an accuracy of only 0.90. Last, using the most accurate biomarkers to define hvKp, prevalence studies were performed on two Western strain collections. These data strongly support the utility of several laboratory markers for identifying hvKp strains with a high degree of accuracy.
Acinetobacter baumannii is a pathogen of increasing medical importance with a propensity to be multidrug resistant, thereby making treatment challenging. Little is known of virulence traits in A. baumannii. To identify virulence factors and potential drug targets, random transposon (Tn) mutants derived from the A. baumannii strain AB307-0294 were screened to identify genes essential for growth in human ascites fluid in vitro, an inflammatory exudative fluid. These studies led to the identification of two genes that were predicted to be required for capsule polymerization and assembly. The first, ptk, encodes a putative protein tyrosine kinase (PTK), and the second, epsA, encodes a putative polysaccharide export outer membrane protein (EpsA). Monoclonal antibodies used in flow cytometric and Western analyses confirmed that these genes are required for a capsule-positive phenotype. A capsule-positive phenotype significantly optimized growth in human ascites fluid, survival in human serum, and survival in a rat soft tissue infection model. Importantly, the clearance of the capsule-minus mutants AB307.30 (ptk mutant, capsule minus) and AB307.45 (epsA mutant, capsule minus) was complete and durable. These data demonstrated that the K1 capsule from AB307-0294 was an important protectin. Further, these data suggested that conserved proteins, which contribute to the capsule-positive phenotype, are potential antivirulence drug targets. Therefore, the results from this study have important biologic and translational implications and, to the best of our knowledge, are the first to address the role of capsule in the pathogenesis of A. baumannii infection.
The siderophore aerobactin is the dominant siderophore produced by hypervirulent Klebsiella pneumoniae (hvKP) and was previously shown to be a major virulence factor in systemic infection. However, strains of hvKP commonly produce the additional siderophores yersiniabactin, salmochelin, and enterobactin. The roles of these siderophores in hvKP infection have not been optimally defined. To that end, site-specific gene disruptions were created in hvKP1 (wild type), resulting in the generation of hvKP1⌬iucA (aerobactin deficient), hvKP1⌬iroB (salmochelin deficient), hvKP1⌬entB (enterobactin and salmochelin deficient), hvKP1⌬irp2 (yersiniabactin deficient), and hvKP1⌬entB⌬irp2 (enterobactin, salmochelin, and yersiniabactin deficient). The growth/survival of these constructs was compared to that of their wild-type parent hvKP1 ex vivo in human ascites fluid, human serum, and human urine and in vivo in mouse systemic infection and pulmonary challenge models. Interestingly, in contrast to aerobactin, the inability to produce enterobactin, salmochelin, or yersiniabactin individually or in combination did not decrease the ex vivo growth/survival in human ascites or serum or decrease virulence in the in vivo infection models. Surprisingly, none of the siderophores increased growth in human urine. In human ascites fluid supplemented with exogenous siderophores, siderophores increased the growth of hvKP1⌬iucA, with the relative activity being enterobactin > aerobactin > yersiniabactin > salmochelin, suggesting that the contribution of aerobactin to virulence is dependent on both innate biologic activity and quantity produced. Taken together, these data confirm and extend a role for aerobactin as a critical virulence factor for hvKP. Since it appears that aerobactin production is a defining trait of hvKP strains, this factor is a potential antivirulence target. In the ongoing chess match between microbial pathogens and the human host, the pathogens as of late seem to be gaining the upper hand. Klebsiella pneumoniae is proving to be especially problematic and has evolved into two distinct epidemiologically and clinically defined pathotypes.The first and best-known pathotype, best termed "classical" K. pneumoniae (cKP), is presently responsible for the majority of K. pneumoniae infections in Western countries, which primarily occur in hospitals and long-term-care facilities (1). Importantly, cKP strains have received increased notoriety due to their propensity for acquiring antimicrobial resistance determinants, primarily carbapenemases, that make treatment challenging. The spread of New Delhi metallo--lactamase (NDM-1)-containing strains from India that are associated with medical tourism and, more recently, the extremely drug-resistant K. pneumoniae (XDR-KP) outbreak at the Clinical Center Hospital on the NIH campus have captured the attention of physicians, scientists, and the press (2, 3). XDR-KP is spreading globally and is primarily responsible for the increase in infections due to carbapenem-resistant bacteria in the U...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.